.NET设计模式(12):外观模式(Façade Pattern)(转)

概述

在软件开发系统中,客户程序经常会与复杂系统的内部子系统之间产生耦合,而导致客户程序随着子系统的变化而变化。那么如何简化客户程序与子系统之间的交互接口?如何将复杂系统的内部子系统与客户程序之间的依赖解耦?这就是要说的Façade 模式。


意图

为子系统中的一组接口提供一个一致的界面,Facade模式定义了一个高层接口,这个接口使得这一子系统更加容易使用。[GOF 《设计模式》]

示意图

门面模式没有一个一般化的类图描述,下面是一个示意性的对象图:

图1 Façade模式示意性对象图

生活中的例子

外观模式为子系统中的接口定义了一个统一的更高层次的界面,以便于使用。当消费者按照目录采购时,则体现了一个外观模式。消费者拨打一个号码与客服代表联系,客服代表则扮演了这个"外观",他包含了与订货部、收银部和送货部的接口。

图2使用电话订货例子的外观模式对象图

Facade模式解说

我们平时的开发中其实已经不知不觉的在用Façade模式,现在来考虑这样一个抵押系统,当有一个客户来时,有如下几件事情需要确认:到银行子系统查询他是否有足够多的存款,到信用子系统查询他是否有良好的信用,到贷款子系统查询他有无贷款劣迹。只有这三个子系统都通过时才可进行抵押。我们先不考虑Façade模式,那么客户程序就要直接访问这些子系统,分别进行判断。类结构图下:

图3

在这个程序中,我们首先要有一个顾客类,它是一个纯数据类,并无任何操作,示意代码:

//顾客类
public class Customer
{
    private string _name;

    public Customer(string name)
    {
        this._name = name;
    }

    public string Name
    {
        get { return _name; }
    }
}

下面这三个类均是子系统类,示意代码:

//银行子系统
public class Bank
{
    public bool HasSufficientSavings(Customer c, int amount)
    {
        Console.WriteLine("Check bank for " + c.Name);
        return true;
    }
}

//信用子系统
public class Credit
{
    public bool HasGoodCredit(Customer c)
    {
        Console.WriteLine("Check credit for " + c.Name);
        return true;
    }
}

//贷款子系统
public class Loan
{
    public bool HasNoBadLoans(Customer c)
    {
        Console.WriteLine("Check loans for " + c.Name);
        return true;
    }
}

来看客户程序的调用:

//客户程序
public class MainApp
{
    private const int _amount = 12000;

    public static void Main()
    {
        Bank bank = new Bank();
        Loan loan = new Loan();
        Credit credit = new Credit();

        Customer customer = new Customer("Ann McKinsey");

        bool eligible = true;

        if (!bank.HasSufficientSavings(customer, _amount))
        {
            eligible = false;
        }
        else if (!loan.HasNoBadLoans(customer))
        {
            eligible = false;
        }
        else if (!credit.HasGoodCredit(customer))
        {
            eligible = false;
        }

        Console.WriteLine("\n" + customer.Name + " has been " + (eligible ? "Approved" : "Rejected"));
        Console.ReadLine();
    }
}

可以看到,在不用Façade模式的情况下,客户程序与三个子系统都发生了耦合,这种耦合使得客户程序依赖于子系统,当子系统变化时,客户程序也将面临很多变化的挑战。一个合情合理的设计就是为这些子系统创建一个统一的接口,这个接口简化了客户程序的判断操作。看一下引入Façade模式后的类结构图:

图4

门面类Mortage的实现如下:

//外观类
public class Mortgage
{
    private Bank bank = new Bank();
    private Loan loan = new Loan();
    private Credit credit = new Credit();

    public bool IsEligible(Customer cust, int amount)
    {
        Console.WriteLine("{0} applies for {1:C} loan\n",
          cust.Name, amount);

        bool eligible = true;

        if (!bank.HasSufficientSavings(cust, amount))
        {
            eligible = false;
        }
        else if (!loan.HasNoBadLoans(cust))
        {
            eligible = false;
        }
        else if (!credit.HasGoodCredit(cust))
        {
            eligible = false;
        }

        return eligible;
    }
}

顾客类和子系统类的实现仍然如下:

//银行子系统
public class Bank
{
    public bool HasSufficientSavings(Customer c, int amount)
    {
        Console.WriteLine("Check bank for " + c.Name);
        return true;
    }
}

//信用证子系统
public class Credit
{
    public bool HasGoodCredit(Customer c)
    {
        Console.WriteLine("Check credit for " + c.Name);
        return true;
    }
}

//贷款子系统
public class Loan
{
    public bool HasNoBadLoans(Customer c)
    {
        Console.WriteLine("Check loans for " + c.Name);
        return true;
    }
}

//顾客类
public class Customer
{
    private string name;

    public Customer(string name)
    {
        this.name = name;
    }

    public string Name
    {
        get { return name; }
    }
}

而此时客户程序的实现:

//客户程序类
public class MainApp
{
    public static void Main()
    {
        //外观
        Mortgage mortgage = new Mortgage();

        Customer customer = new Customer("Ann McKinsey");
        bool eligable = mortgage.IsEligible(customer, 125000);

        Console.WriteLine("\n" + customer.Name +
            " has been " + (eligable ? "Approved" : "Rejected")); 
        Console.ReadLine();
    }
}

可以看到引入Façade模式后,客户程序只与Mortgage发生依赖,也就是Mortgage屏蔽了子系统之间的复杂的操作,达到了解耦内部子系统与客户程序之间的依赖。

.NET架构中的Façade模式

Façade模式在实际开发中最多的运用当属开发N层架构的应用程序了,一个典型的N层结构如下:

图5

在这个架构中,总共分为四个逻辑层,分别为:用户层UI,业务外观层Business Façade,业务规则层Business Rule,数据访问层Data Access。其中Business Façade层的职责如下:

l         从“用户”层接收用户输入

l         如果请求需要对数据进行只读访问,则可能使用“数据访问”层

l         将请求传递到“业务规则”层

l         将响应从“业务规则”层返回到“用户”层

l         在对“业务规则”层的调用之间维护临时状态

对这一架构最好的体现就是Duwamish示例了。在该应用程序中,有部分操作只是简单的从数据库根据条件提取数据,不需要经过任何处理,而直接将数据显示到网页上,比如查询某类别的图书列表。而另外一些操作,比如计算定单中图书的总价并根据顾客的级别计算回扣等等,这部分往往有许多不同的功能的类,操作起来也比较复杂。如果采用传统的三层结构,这些商业逻辑一般是会放在中间层,那么对内部的这些大量种类繁多,使用方法也各异的不同的类的调用任务,就完全落到了表示层。这样势必会增加表示层的代码量,将表示层的任务复杂化,和表示层只负责接受用户的输入并返回结果的任务不太相称,并增加了层与层之间的耦合程度。于是就引入了一个Façade层,让这个Facade来负责管理系统内部类的调用,并为表示层提供了一个单一而简单的接口。看一下Duwamish结构图:

图6

从图中可以看到,UI层将请求发送给业务外观层,业务外观层对请求进行初步的处理,判断是否需要调用业务规则层,还是直接调用数据访问层获取数据。最后由数据访问层访问数据库并按照来时的步骤返回结果到UI层,来看具体的代码实现。

在获取商品目录的时候,Web UI调用业务外观层:

productSystem = new ProductSystem();
categorySet   = productSystem.GetCategories(categoryID);

业务外观层直接调用了数据访问层:

public CategoryData GetCategories(int categoryId)
{
    //
    // Check preconditions
    //
    ApplicationAssert.CheckCondition(categoryId >= 0,"Invalid Category Id",ApplicationAssert.LineNumber);
    //
    // Retrieve the data
    //
    using (Categories accessCategories = new Categories())
    {
        return accessCategories.GetCategories(categoryId);
    }
    
}

在添加订单时,UI调用业务外观层:

public void AddOrder()
{
    ApplicationAssert.CheckCondition(cartOrderData != null, "Order requires data", ApplicationAssert.LineNumber);

    //Write trace log.
    ApplicationLog.WriteTrace("Duwamish7.Web.Cart.AddOrder:\r\nCustomerId: " +
                                cartOrderData.Tables[OrderData.CUSTOMER_TABLE].Rows[0][OrderData.PKID_FIELD].ToString());
    cartOrderData = (new OrderSystem()).AddOrder(cartOrderData);
}

业务外观层调用业务规则层:

public OrderData AddOrder(OrderData order)
{
    //
    // Check preconditions
    //
    ApplicationAssert.CheckCondition(order != null, "Order is required", ApplicationAssert.LineNumber);
    
    (new BusinessRules.Order()).InsertOrder(order);
    return order;
}

业务规则层进行复杂的逻辑处理后,再调用数据访问层:

public bool InsertOrder(OrderData order)
{    
    //
    // Assume it‘s good
    //
    bool isValid = true;
    //            
    // Validate order summary
    //
    DataRow summaryRow = order.Tables[OrderData.ORDER_SUMMARY_TABLE].Rows[0];
    
    summaryRow.ClearErrors();

    if (CalculateShipping(order) != (Decimal)(summaryRow[OrderData.SHIPPING_HANDLING_FIELD]))
    {
        summaryRow.SetColumnError(OrderData.SHIPPING_HANDLING_FIELD, OrderData.INVALID_FIELD);
        isValid = false;
    }

    if (CalculateTax(order) != (Decimal)(summaryRow[OrderData.TAX_FIELD]))
    {
        summaryRow.SetColumnError(OrderData.TAX_FIELD, OrderData.INVALID_FIELD);
        isValid = false;
    }
    //    
    // Validate shipping info
    //
    isValid &= IsValidField(order, OrderData.SHIPPING_ADDRESS_TABLE, OrderData.SHIP_TO_NAME_FIELD, 40);
    //
    // Validate payment info 
    //
    DataRow paymentRow = order.Tables[OrderData.PAYMENT_TABLE].Rows[0];
    
    paymentRow.ClearErrors();
    
    isValid &= IsValidField(paymentRow, OrderData.CREDIT_CARD_TYPE_FIELD, 40);
    isValid &= IsValidField(paymentRow, OrderData.CREDIT_CARD_NUMBER_FIELD,  32);
    isValid &= IsValidField(paymentRow, OrderData.EXPIRATION_DATE_FIELD, 30);
    isValid &= IsValidField(paymentRow, OrderData.NAME_ON_CARD_FIELD, 40);
    isValid &= IsValidField(paymentRow, OrderData.BILLING_ADDRESS_FIELD, 255);
    //
    // Validate the order items and recalculate the subtotal
    //
    DataRowCollection itemRows = order.Tables[OrderData.ORDER_ITEMS_TABLE].Rows;
    
    Decimal subTotal = 0;
    
    foreach (DataRow itemRow in itemRows)
    {
        itemRow.ClearErrors();
        
        subTotal += (Decimal)(itemRow[OrderData.EXTENDED_FIELD]);
        
        if ((Decimal)(itemRow[OrderData.PRICE_FIELD]) <= 0)
        {
            itemRow.SetColumnError(OrderData.PRICE_FIELD, OrderData.INVALID_FIELD);
            isValid = false;
        }

        if ((short)(itemRow[OrderData.QUANTITY_FIELD]) <= 0)
        {
            itemRow.SetColumnError(OrderData.QUANTITY_FIELD, OrderData.INVALID_FIELD);
            isValid = false;
        }
    }
    //
    // Verify the subtotal
    //
    if (subTotal != (Decimal)(summaryRow[OrderData.SUB_TOTAL_FIELD]))
    {
        summaryRow.SetColumnError(OrderData.SUB_TOTAL_FIELD, OrderData.INVALID_FIELD);
        isValid = false;
    }

    if ( isValid )
    {
        using (DataAccess.Orders ordersDataAccess = new DataAccess.Orders())
        {
            return (ordersDataAccess.InsertOrderDetail(order)) > 0;
        }
    }
    else
        return false;
}

[MSDN]

效果及实现要点

1.Façade模式对客户屏蔽了子系统组件,因而减少了客户处理的对象的数目并使得子系统使用起来更加方便。

2.Façade模式实现了子系统与客户之间的松耦合关系,而子系统内部的功能组件往往是紧耦合的。松耦合关系使得子系统的组件变化不会影响到它的客户。

3.如果应用需要,它并不限制它们使用子系统类。因此你可以在系统易用性与通用性之间选择。

适用性

1.为一个复杂子系统提供一个简单接口。

2.提高子系统的独立性。

3.在层次化结构中,可以使用Facade模式定义系统中每一层的入口。

总结

Façade模式注重的是简化接口,它更多的时候是从架构的层次去看整个系统,而并非单个类的层次。

参考资料

Erich Gamma等,《设计模式:可复用面向对象软件的基础》,机械工业出版社

Robert C.Martin,《敏捷软件开发:原则、模式与实践》,清华大学出版社

阎宏,《Java与模式》,电子工业出版社

Alan Shalloway James R. Trott,《Design Patterns Explained》,中国电力出版社

MSDN WebCast 《C#面向对象设计模式纵横谈(11):Facade外观模式(结构型模式)》

时间: 2025-01-12 11:06:23

.NET设计模式(12):外观模式(Façade Pattern)(转)的相关文章

二十四种设计模式:外观模式(Facade Pattern)

外观模式(Facade Pattern) 介绍为子系统中的一组接口提供一个一致的界面,Facade模式定义了一个高层接口,这个接口使得这一子系统更加容易使用. 示例有一个Message实体类,某对象对它的操作有Get()方法,另外还有一个对象有一个Validate()方法来判断用户是否有权限.现在提供一个高层接口来封装这两个方法. MessageModel using System; using System.Collections.Generic; using System.Text; nam

设计模式-10外观模式(Facade Pattern)

1.模式动机 在现实生活中,常常存在办事较复杂的例子,如办房产证或注册一家公司,有时要同多个部门联系,这时要是有一个综合部门能解决一切手续问题就好了. 软件设计也是这样,当一个系统的功能越来越强,子系统会越来越多,客户对系统的访问也变得越来越复杂.这时如果系统内部发生改变,客户端也要跟着改变,这违背了"开闭原则",也违背了"迪米特法则(最少知道原则)",所以有必要为多个子系统提供一个统一的接口,从而降低系统的耦合度,这就是外观模式的目标. 2.模式定义 外观模式(F

设计模式(12)-----外观模式

外观模式(Facade) 定义 模式为子系统中的各类(或结构与方法)提供一个简明一致的界面,隐藏子系统的复杂性,使子系统更加容易使用. UML图 例子 方法A package com.csdhsm.pattemdesign.facade; /** * @Title: ServiceA.java * @Description: 方法A * @author: Han * @date: 2016年6月22日 下午8:22:33 */ public class ServiceA { public voi

二十三种设计模式[12] - 代理模式(Proxy Pattern)

前言 代理模式,属于对象结构型模式.在<设计模式 - 可复用的面向对象软件>一书中将之描述为" 为其它对象提供一种代理以控制对这个对象的访问 ". 在代理模式中,通常使用一个类来代表另一个类的功能,并由这个代理对象去控制原对象的引用. 结构 Subjuet(公共接口):代理类和被代理类的公共接口,保证任何使用目标的地方都可以被代理类替换: RealSubject(被代理类):代理类所代表的目标类: Proxy(代理类):包含对目标类的引用,目标类的封装: 场景 在日常生活中

设计模式 - 外观模式(facade pattern) 详解

外观模式(facade pattern) 详解 本文地址: http://blog.csdn.net/caroline_wendy 外观模式(facade pattern): 提供了一个统一的接口, 用来访问子系统中的一群接口. 外观定义了一个高层接口, 让子系统更容易使用. 外观模式包含三个部分: 1. 子系统: 子类, 单个复杂子类 或 多个子类; 2. 外观(facade)类: 把子系统设计的更加容易使用; 3. 客户: 只需要调用外观类. 与适配器模式(adapter pattern)的

设计模式之- 外观模式(Facade Pattern)

外观模式 外观模式(Facade Pattern):外部与一个子系统的通信必须通过一个统一的外观对象进行,为子系统中的一组接口提供一个一致的界面,外观模式定义了一个高层接口,这个接口使得这一子系统更加容易使用.外观模式又称为门面模式,它是一种对象结构型模式. C++代码: #include<iostream> using namespace std; class Shape { public: virtual void draw()=0; }; class Rectangle : public

C#设计模式(11)——外观模式(Facade Pattern)

一.引言 在软件开发过程中,客户端程序经常会与复杂系统的内部子系统进行耦合,从而导致客户端程序随着子系统的变化而变化,然而为了将复杂系统的内部子系统与客户端之间的依赖解耦,从而就有了外观模式,也称作 "门面"模式.下面就具体介绍下外观模式. 二.外观模式的详细介绍 2.1 定义 外观模式提供了一个统一的接口,用来访问子系统中的一群接口.外观定义了一个高层接口,让子系统更容易使用.使用外观模式时,我们创建了一个统一的类,用来包装子系统中一个或多个复杂的类,客户端可以直接通过外观类来调用内

【设计模式】外观模式

外观模式:它为子系统中的一组接口提供一个统一的高层接口,使得子系统更容易使用.这其实就是一个分层的思想,将较低层复杂的操作交由较高层同一管理,并向用户程序提供简单易用的接口.下面是一个用C++编写的外观模式的例子. #include <iostream> #include <string> using namespace std; // 键盘类 class Keyboard { public: string Type(const string &input) { retur

设计模式之外观模式(Facade)摘录

23种GOF设计模式一般分为三大类:创建型模式.结构型模式.行为模式. 创建型模式抽象了实例化过程,它们帮助一个系统独立于如何创建.组合和表示它的那些对象.一个类创建型模式使用继承改变被实例化的类,而一个对象创建型模式将实例化委托给另一个对象.创建型模式有两个不断出现的主旋律.第一,它们都将关于该系统使用哪些具体的类的信息封装起来.第二,它们隐藏了这些类的实例是如何被创建和放在一起的.整个系统关于这些对象所知道的是由抽象类所定义的接口.因此,创建型模式在什么被创建,谁创建它,它是怎样被创建的,以

设计模式 - 装饰者模式(Decorator Pattern) Java的IO类 使用方法

装饰者模式(Decorator Pattern) Java的IO类 使用方法 本文地址: http://blog.csdn.net/caroline_wendy/article/details/26716823 装饰者模式(decorator pattern)参见: http://blog.csdn.net/caroline_wendy/article/details/26707033 Java的IO类使用装饰者模式进行扩展, 其中FilterInputStream类, 就是装饰者(decora