Ultra-QuickSort
Time Limit: 7000MS | Memory Limit: 65536K | |
Total Submissions: 47235 | Accepted: 17258 |
Description
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping
two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a
single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5 9 1 0 5 4 3 1 2 3 0
Sample Output
6 0
Source
题目链接:http://poj.org/problem?id=2299
题目大意:求逆序数
题目分析:以前学的用树状数组求逆序数,补一下归并排序的求法,感觉实现起来更简单,归并排序自顶向下分解,自底向上合并,每次合并的两个区间都是已经排好序了的,这就给我们求逆序数带来了很大的好处
我们把一个大区间[l,r]分成[l,mid], [mid + 1, r],显然每次我们只要求一个数在左区间,一个数在右区间时的逆序数个数,而不用考虑左区间内和右区间内的逆序数个数,因为合并是自底向上的,左区间和右区间内的逆序数我们已经在他们的子状态中求结果了,所以在自底向上合并时,我们直接累加每一层的逆序数个数就是最后整个区间的逆序数了。很赞的应用,对递归有了更深刻的理解
#include <cstdio> #include <cstring> #include <algorithm> #define ll long long using namespace std; int const MAX = 500005; int a[MAX], n; ll ans; void Merge(int l, int mid, int r) { int i = l, j = mid + 1; while(i <= mid && j <= r) { if(a[i] <= a[j]) i ++; else { j ++; //因为左右区间都是有序的,因此a[i]>a[j]说明a[i]~a[mid]都大于a[j] ans += mid - i + 1; } } sort(a + l, a + r + 1); return; } void Merge_sort(int l, int r) { if(l < r) { int mid = (l + r) / 2; Merge_sort(l, mid); Merge_sort(mid + 1, r); Merge(l, mid, r); } return; } int main() { while(scanf("%d", &n) != EOF && n) { ans = 0; for(int i = 0; i < n; i++) scanf("%d", &a[i]); Merge_sort(0, n - 1); printf("%lld\n", ans); } }
版权声明:本文为博主原创文章,未经博主允许不得转载。