Prim算法:最小生成树---贪心算法的实现

算法图解:

http://baike.baidu.com/link?url=hGNkWIOLRJ_LDWMJRECxCPKUw7pI3s8AH5kj-944RwgeBSa9hGpTaIz5aWYsl_sTyBgjxW-CnXn9LEHcy4GJE6N71Z7guFriwOVGLjGOFeaI44gRVid1N8iL-li-7wOt5WoH4K9zOTNFeeTB31HBOq

实现代码:

http://blog.csdn.net/tingting256/article/details/50471033

时间: 2024-11-13 09:36:11

Prim算法:最小生成树---贪心算法的实现的相关文章

贪心算法-最小生成树Kruskal算法和Prim算法

Kruskal算法: 不断地选择未被选中的边中权重最轻且不会形成环的一条. 简单的理解: 不停地循环,每一次都寻找两个顶点,这两个顶点不在同一个真子集里,且边上的权值最小. 把找到的这两个顶点联合起来. 初始时,每个顶点各自属于自己的子集合,共n个子集合. 每一步操作,都会将两个子集合融合成一个,进而减少一个子集合. 结束时,所有的顶点都在同一个子集合里,这个子集合就是最小生成树. 例子: 伪代码: Prim算法: G=(V,E),S是V的真子集,如果u在S中,v在V-S中,且(u,v)是图的一

Prim算法---最小生成树

最小生成树的Prim算法也是贪心算法的一大经典应用.Prim算法的特点是时刻维护一棵树,算法不断加边,加的过程始终是一棵树. Prim算法过程: 一条边一条边地加, 维护一棵树. 初始 E = {}空集合, V = {任意节点} 循环(n – 1)次,每次选择一条边(v1,v2), 满足:v1属于V , v2不属于V.且(v1,v2)权值最小. E = E + (v1,v2)V = V + v2 最终E中的边是一棵最小生成树, V包含了全部节点. 以下图为例介绍Prim算法的执行过程. Prim

Prim算法——最小生成树

#include <bits/stdc++.h> using namespace std; const int maxn=100000+15; const int maxm=100000+15; struct Edge { int x,y,z,next; Edge(int x=0,int y=0,int z=0,int next=0):x(x),y(y),z(z),next(next) {} }edge[maxm*2]; const bool operator < (const Edge

贪心算法的实现框架

从问题的某一初始解出发: while (能朝给定总目标前进一步) { 利用可行的决策,求出可行解的一个解元素: } 由所有解元素组合成问题的一个可行解:

最小生成树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind

最小支撑树树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind 最小支撑树树 前几节中介绍的算法都是针对无权图的,本节将介绍带权图的最小支撑树(minimum spanning tree)算法.给定一个无向图G,并且它的每条边均权值,则MST是一个包括G的所有顶点及边的子集的图,这个子集保证图是连通的,并且子集中所有边的权值之和为所有子集中最小的. 本节中介绍三种算法求解图的最小生成树:Prim算法.Kruskal算法和Boruvk

数据结构:最小生成树--Prim算法

最小生成树:Prim算法 最小生成树 给定一无向带权图,顶点数是n,要使图连通只需n-1条边,若这n-1条边的权值和最小,则称有这n个顶点和n-1条边构成了图的最小生成树(minimum-cost spanning tree). Prim算法 Prim算法是解决最小生成树的常用算法.它采取贪心策略,从指定的顶点开始寻找最小权值的邻接点.图G=<V,E>,初始时S={V0},把与V0相邻接,且边的权值最小的顶点加入到S.不断地把S中的顶点与V-S中顶点的最小权值边加入,直到所有顶点都已加入到S中

最小生成树之Prim算法 C++实现

Prim算法大致介绍(个人理解) 1:图中所有的点组成了一个集合set,从集合set中随意选取一个点s,开始进行该算法, 2:从set中将该点s删除,并将该点s加入到另外一个集合now中,now初始为空 3:对now中的所有节点进行遍历,找到距离now的最近的那个非集合now的节点,并将该节点从set中删除,加入now中, 4:重复步骤3,直到set集合为空 无向图: #include<map> #include<vector> #include<string> #in

回溯算法 和 贪心算法(全排列)

一:简介 (1)回溯法 又称试探法 回溯法的基本做法是深度优先搜索,是一种组织得井井有条的.能避免不必要重复搜索的穷举式搜索算法:基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试. 适用场景:当遇到某一类问题时,它的问题可以分解,但是又不能得出明确的动态规划或是递归解法,此时可以考虑用回溯法解决此类问题.回溯法的优点在于其程序结构明确,可读性强,易于理解,而且通过对问题的分析可以大大提高运行效率.但是,对于可以得出明显的递推公式迭代求解的问题,还是不要用回溯法,因为它花费的时间

常用算法之贪心

  一.背景 在软考的准备中,遇到了算法,听过来人收,算法研究好了就很简单,研究不好就觉得很难,于是想着对算法做个总结,因为算法不仅仅在大题中占有15分,而且在选择题中同样也会出现,尤其是考复杂度和各种算法的适用情况, 贪心(目光短浅):就像找男女朋友一样,不求最好,只求合适(可行解)             二.如何知道在某种情况下用贪心是合适的呢?         贪心策略适用的前提是:局部最优策略能导致产生全局最优解. 实际上,贪心算法适用的情况很少.一般,对一个问题分析是否适用于贪心算法