svm入门的疑惑

1,为什么函数间隔能变成1

SVM的思想基础就是希望不同类别的样本能分的更开一些。用数学表述就是距离更大。

距离分为分为两种:函数距离和集合距离。

函数距离

从公式可以看到,函数距离其实可以通过同步放大缩小W和B实现。

几何距离:   

很容易知道他们之间的关系是:

我们希望的距离最大,其实是几何距离最大

所以,这里我们通过缩放,固定函数距离为1,那么,就可以固定我们想要最大化的距离为:

2,什么是凸优化

凸优化就是凸函数在凸集上的优化。

凸函数:导数函数递增的函数(即二次求导永远大于零的函数)

凸集:集合内两点连线上的点永远在集合内的集合。

凸优化一个很好的特质:局部极值,就是全局的极值。

3,什么是对偶问题。

对偶问题就是将限制条件变换顺序。

4,为什么要引入KKT条件

不是所有的顺序变换都能使等号成立,在这里,如果需要等号成立,就需要引入KKT条件。

参考资料:

svm简要推到:http://www.cnblogs.com/daniel-D/p/3237468.html

拉格朗日对偶:http://www.cnblogs.com/liqizhou/archive/2012/05/11/2495689.html

时间: 2024-10-12 16:08:05

svm入门的疑惑的相关文章

SVM入门

转自:http://www.blogjava.net/zhenandaci/archive/2009/02/13/254519.html 按:之前的文章重新汇编一下,修改了一些错误和不当的说法,一起复习,然后继续SVM之旅. (一)SVM的八股简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本.非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10].支持向量机方法是建立在统计

【转】SVM入门(六)线性分类器的求解——问题的转化,直观角度

SVM入门(六)线性分类器的求解--问题的转化,直观角度 让我再一次比较完整的重复一下我们要解决的问题:我们有属于两个类别的样本点(并不限定这些点在二维空间中)若干,如图, 圆形的样本点定为正样本(连带着,我们可以把正样本所属的类叫做正类),方形的点定为负例.我们想求得这样一个线性函数(在n维空间中的线性函数): g(x)=wx+b 使得所有属于正类的点x+代入以后有g(x+)≥1,而所有属于负类的点x-代入后有g(x-)≤-1(之所以总跟1比较,无论正一还是负一,都是因为我们固定了间隔为1,注

SVM入门(一)

(一)SVM的八股简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本.非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10].支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力[14](或称

SVM入门(二)线性分类器Part 1

线性分类器(一定意义上,也可以叫做感知机) 是最简单也很有效的分类器形式.在一个线性分类器中,可以看到SVM形成的思路,并接触很多SVM的核心概念.用一个二维空间里仅有两类样本的分类问题来举个小例子.如图所示 C1和C2是要区分的两个类别,在二维平面中它们的样本如上图所示.中间的直线就是一个分类函数,它可以将两类样本完全分开.一般的,如果一个线性函数能够将样本完全正确的分开,就称这些数据是线性可分的,否则称为非线性可分的. 什么叫线性函数呢?在一维空间里就是一个点,在二维空间里就是一条直线,三维

SVM入门(三)线性分类器Part 2

上回说到对于文本分类这样的不适定问题(有一个以上解的问题称为不适定问题),需要有一个指标来衡量解决方案(即我们通过训练建立的分类模型)的好坏,而分类间隔是一个比较好的指标.    在进行文本分类的时候,我们可以让计算机这样来看待我们提供给它的训练样本,每一个样本由一个向量(就是那些文本特征所组成的向量)和一个标记(标示出这个样本属于哪个类别)组成.如下:Di=(xi,yi).xi就是文本向量(维数很高),yi就是分类标记.    在二元的线性分类中,这个表示分类的标记只有两个值,1和-1(用来表

SVM算法入门

转自:http://blog.csdn.net/yangliuy/article/details/7316496SVM入门(一)至(三)Refresh 按:之前的文章重新汇编一下,修改了一些错误和不当的说法,一起复习,然后继续SVM之旅. (一)SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本.非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]. 支持向量机方法

支持向量机通俗导论(理解SVM的三层境界)

作者:July.pluskid :致谢:白石.JerryLead 出处:结构之法算法之道blog. 前言 动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因很简单,一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间和精力,二者这个东西也不好讲清楚,尽管网上已经有朋友写得不错了(见文末参考链接),但在描述数学公式的时候还是显得不够.得益于同学白石的数学证明,我还是想尝试写一下,希望本文在兼顾通俗易懂的基础上,真真正正能足以成为一篇完整概括和介

支持向量机入门到精通

转自:http://blog.csdn.net/macyang/article/details/38782399 第一层.了解SVM 1.0.什么是支持向量机SVM 要明白什么是SVM,便得从分类说起. 分类作为数据挖掘领域中一项非常重要的任务,它的目的是学会一个分类函数或分类模型(或者叫做分类器),而支持向量机本身便是一种监督式学习的方法(至于具体什么是监督学习与非监督学习,请参见此系列Machine L&Data Mining第一篇),它广泛的应用于统计分类以及回归分析中. 支持向量机(SV

机器学习——svm支持向量机的原理

前言 动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因很简单,一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间和精力,二者这个东西也不好讲清楚,尽管网上已经有朋友写得不错了(见文末参考链接),但在描述数学公式的时候还是显得不够.得益于同学白石的数学证明,我还是想尝试写一下,希望本文在兼顾通俗易懂的基础上,真真正正能足以成为一篇完整概括和介绍支持向量机的导论性的文章. 本文在写的过程中,参考了不少资料,包括<支持向量机导论>.<统