BZOJ 1046 上升序列

Description

对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ax2 < … < axm)。那么就称P为S的一个上升序列。如果有多个P满足条件,那么我们想求字典序最小的那个。任务给出S序列,给出若干询问。对于第i个询问,求出长度为Li的上升序列,如有多个,求出字典序最小的那个(即首先x1最小,如果不唯一,再看x2最小……),如果不存在长度为Li的上升序列,则打印Impossible.

Input

第一行一个N,表示序列一共有N个元素第二行N个数,为a1,a2,…,an 第三行一个M,表示询问次数。下面接M行每行一个数L,表示要询问长度为L的上升序列。

Output

对于每个询问,如果对应的序列存在,则输出,否则打印Impossible.

Sample Input

6
3 4 1 2 3 6
3
6
4
5

Sample Output

Impossible
1 2 3 6
Impossible

HINT

数据范围

N<=10000

M<=1000

Source

这题是对单调队列求最长上升序列的应用。

由于要求字典序最小的,我们得反过来求最长最长下降子序列(从末尾dp起)。g[i]表示从末尾起长度为i的最长下降子序列的第i为的最大值,f[i]表示从i开头的最长上升子序列的长度,len表示当前从末尾开始最长下降序列的长度。很明显,对于序列中的每一位s[i],我们可以在g中二分出最大的一个i使得大于g[i]>s[i](g具有单调性),之后f[i]=i+1,g[i+1]=s[i],len=max(len,i+1)。

最后输出长度为a序列时,我们可以从前往后扫。

1 int cur = -(1<<30);
2 for (int i = 1;a;++ i)
3     if (f[i] >= a && s[i] > cur)
4     {
5         --a; cur = s[i]; printf("%d",s[i]);
6         if (a) putchar(‘ ‘);
7     }

 1 #include<iostream>
 2 #include<cstdlib>
 3 #include<cstdio>
 4 using namespace std;
 5
 6 #define maxn 10010
 7 int f[maxn],g[maxn],s[maxn],n,len;
 8
 9 inline int find(int k)
10 {
11     int l = 1,r = len,mid;
12     while (l <= r)
13     {
14         mid = (l + r) >> 1;
15         if (k >= g[mid]) r = mid - 1;
16         else l = mid + 1;
17     }
18     return l;
19 }
20
21 inline void ready()
22 {
23     for (int i = n;i;--i)
24     {
25         int pos = find(s[i]);
26         f[i] = pos; len = max(pos,len); g[pos] = s[i];
27     }
28 }
29
30 int main()
31 {
32     scanf("%d",&n);
33     for (int i = 1;i <= n;++i) scanf("%d",s+i);
34     ready();
35     int T,a; scanf("%d",&T);
36     while (T--)
37     {
38         scanf("%d",&a);
39         if (a > len) puts("Impossible");
40         else
41         {
42             int cur = -(1<<30);
43             for (int i = 1;a;++ i)
44                 if (f[i] >= a && s[i] > cur)
45                 {
46                     --a; cur = s[i]; printf("%d",s[i]);
47                     if (a) putchar(‘ ‘);
48                 }
49             putchar(‘\n‘);
50          }
51     }
52 }

时间: 2024-10-11 23:14:33

BZOJ 1046 上升序列的相关文章

BZOJ 1046 上升序列(LIS变形)

要保证长度为L的序列下标字典序最小,当然要尽量选前面的数. 如何判断前面的数是否满足条件?,只需要知道这个数开头的递增序列的最长长度是多少,如果不小于L,那么必然可以加入这个数.还需判断一下它是否大于前面的那个数就行了. LIS用nlogn. # include <cstdio> # include <cstring> # include <cstdlib> # include <iostream> # include <vector> # in

[BZOJ 1046] [HAOI2007] 上升序列 【DP】

题目链接:BZOJ - 1046 题目分析 先倒着做最长下降子序列,求出 f[i],即以 i 为起点向后的最长上升子序列长度. 注意题目要求的是 xi 的字典序最小,不是数值! 如果输入的 l 大于最长上升子序列长度,输出 Impossible. 否则,从 1 向 n 枚举,贪心,如果 f[i] >= l,就选取 a[i],同时 --l,然后继续向后找比 a[i] 大的第一个数判断是否 f[i] >= l (这时l已经减小了1). 代码 #include <iostream> #i

BZOJ 1046 最长不降子序列(nlogn)

nlogn的做法就是记录了在这之前每个长度的序列的最后一项的位置,这个位置是该长度下最后一个数最小的位置.显然能够达到最优. BZOJ 1046中里要按照字典序输出序列,按照坐标的字典序,那么我萌可以把序列先倒着做最长下降子序列,然后我萌就可以知道以a[i]为开头的最长的长度了.每次扫一遍记录答案即可. 1 #include <iostream> 2 #include <cstring> 3 #include <cstdio> 4 #include <algori

bzoj 1858: [Scoi2010] 序列操作 题解

[原题] 1858: [Scoi2010]序列操作 Time Limit: 10 Sec  Memory Limit: 64 MB Submit: 1031  Solved: 529 [Submit][Status] Description lxhgww最近收到了一个01序列,序列里面包含了n个数,这些数要么是0,要么是1,现在对于这个序列有五种变换操作和询问操作: 0 a b 把[a, b]区间内的所有数全变成0 1 a b 把[a, b]区间内的所有数全变成1 2 a b 把[a,b]区间内

BZOJ 1049 数字序列(LIS)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1049 题意:给出一个数列A,要求:(1)修改最少的数字使得数列严格递增:(2)在(1)的基础上使得修改的绝对值之和最小. 思路:对于第一问看起来像是求最长上升子 列,其实不是.我们想,若对于i<j,j能由i转移过来,那么需满足A[j]-A[i]>=j-i才行,这样我们发现只要A[j]-j& gt;=A[i]-i即可.因此令A[i]=A[i]-i,这样求LIS即可.对于第二问,

[BZOJ 4350]括号序列再战猪猪侠 题解(区间DP)

[BZOJ 4350]括号序列再战猪猪侠 Description 括号序列与猪猪侠又大战了起来. 众所周知,括号序列是一个只有(和)组成的序列,我们称一个括号 序列S合法,当且仅当: 1.( )是一个合法的括号序列. 2.若A是合法的括号序列,则(A)是合法的括号序列. 3.若A,B是合法的括号序列,则AB是合法的括号序列. 我们考虑match[i]表示从左往右数第i个左括号所对应的是第几个右 括号,现在他得到了一个长度为2n的括号序列,给了你m个信息,第i 个信息形如ai,bi,表示match

[BZOJ 1046][HAOI 2007]上升序列(nlogn的LIS算法)

题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1046 有人说这题是NOIP难度?表示怀疑,蒟蒻认为此题难度略大于NOIP.... 这个题的序列长度n<=1e4,如果用n^2的LIS做法肯定TLE,只能用nlogn的算法,这种算法在http://www.slyar.com/blog/longest-ordered-subsequence.html中有详细讲解. 由于题目题意要求,我们需要求出以每个数字开头的最长上升子序列长度,但

BZOJ 1046: [HAOI2007]上升序列 LIS -dp

1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3438  Solved: 1171[Submit][Status][Discuss] Description 对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ax2 < … < axm).那么就称P为S的一个上升序列.如果有多

【BZOJ 1046】 1046: [HAOI2007]上升序列

1046: [HAOI2007]上升序列 Description 对于一个给定的S={a1,a2,a3,-,an},若有P={ax1,ax2,ax3,-,axm},满足(x1 < x2 < - < xm)且( ax1 < ax2 < - < axm).那么就称P为S的一个上升序列.如果有多个P满足条件,那么我们想求字典序最小的那个.任务给出S序列,给出若干询问.对于第i个询问,求出长度为Li的上升序列,如有多个,求出字典序最小的那个(即首先x1最小,如果不唯一,再看x2