Language: Default Going Home
Description On a grid map there are n little men and n houses. In each unit time, every little man can move one unit step, either horizontally, or vertically, to an adjacent point. For each little man, you need to pay a $1 travel fee for every step he moves, until he enters Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a ‘.‘ means an empty space, an ‘H‘ represents a house on that point, and am ‘m‘ indicates You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house. Input There are one or more test cases in the input. Each case starts with a line giving two integers N and M, where N is the number of rows of the map, and M is the number of columns. The rest of the input will be N lines describing the map. You may assume both Output For each test case, output one line with the single integer, which is the minimum amount, in dollars, you need to pay. Sample Input 2 2 .m H. 5 5 HH..m ..... ..... ..... mm..H 7 8 ...H.... ...H.... ...H.... mmmHmmmm ...H.... ...H.... ...H.... 0 0 Sample Output 2 10 28 Source |
题意:n*m的图上有若干个人‘m’和房屋‘H’,人每走一步消耗一块钱,现在要让所有的人都进到房子去,一人一间房,问最小的费用是多少。
思路:最小费用流,添加超级源点和超级汇点建图,我用的spfa版费用流算法。
代码:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <string> #include <map> #include <stack> #include <vector> #include <set> #include <queue> #pragma comment (linker,"/STACK:102400000,102400000") #define mod 1000000009 #define INF 0x3f3f3f3f #define pi acos(-1.0) #define eps 1e-6 #define lson rt<<1,l,mid #define rson rt<<1|1,mid+1,r typedef long long ll; using namespace std; /*最小费用最大流,求最大费用只需要取相反数,结果取相反数即可。 点的总数为N,点的编号0~N-1*/ const int MAXN = 300; const int MAXM = 100000; struct Node { int x,y; }H[MAXN],M[MAXN]; struct Edge { int to,next,cap,flow,cost; }edge[MAXM]; int head[MAXN],tol; int pre[MAXN],dis[MAXN]; bool vis[MAXN]; int N,n,m; void init(int n) { N=n; tol=0; memset(head,-1,sizeof(head)); } void addedge(int u,int v,int cap,int cost) { edge[tol].to=v; edge[tol].cap=cap; edge[tol].cost=cost; edge[tol].flow=0; edge[tol].next=head[u]; head[u]=tol++; edge[tol].to=u; edge[tol].cap=0; edge[tol].cost=-cost; edge[tol].flow=0; edge[tol].next=head[v]; head[v]=tol++; } bool spfa(int s,int t) { queue<int>q; for (int i=0;i<N;i++) { dis[i]=INF; vis[i]=false; pre[i]=-1; } dis[s]=0; vis[s]=true; q.push(s); while (!q.empty()) { int u=q.front(); q.pop(); vis[u]=false; for (int i=head[u];i!=-1;i=edge[i].next) { int v=edge[i].to; if (edge[i].cap > edge[i].flow && dis[v] > dis[u] + edge[i].cost) { dis[v]=dis[u] + edge[i].cost; pre[v]=i; if (!vis[v]) { vis[v]=true; q.push(v); } } } } if (pre[t]==-1) return false; else return true; } //返回的是最大流,cost存的是最小费用 int minCostMaxflow(int s,int t,int &cost) { int flow=0; cost=0; while (spfa(s,t)) { int Min=INF; for (int i=pre[t];i!=-1;i=pre[edge[i^1].to]) { if (Min > edge[i].cap-edge[i].flow) Min=edge[i].cap-edge[i].flow; } for (int i=pre[t];i!=-1;i=pre[edge[i^1].to]) { edge[i].flow+=Min; edge[i^1].flow-=Min; cost+=edge[i].cost*Min; } flow+=Min; } return flow; } int main() { char ch; while (scanf("%d%d",&n,&m)&&(m||n)) { int hh=1,mm=1; getchar(); for (int i=1;i<=n;i++) { for (int j=1;j<=m;j++) { scanf("%c",&ch); if (ch=='H') { H[hh].x=i; H[hh++].y=j; } else if (ch=='m') { M[mm].x=i; M[mm++].y=j; } } getchar(); } N=hh+mm+2; init(N); mm--,hh--; for (int i=1;i<=mm;i++) addedge(0,i,1,0); for (int i=1;i<=hh;i++) addedge(i+mm,N-1,1,0); for (int i=1;i<=mm;i++) { for (int j=1;j<=hh;j++) { int x=abs(M[i].x-H[j].x)+abs(M[i].y-H[j].y); addedge(i,j+mm,1,x); } } int ans; int y=minCostMaxflow(0,N-1,ans); printf("%d\n",ans); } return 0; } /* 2 2 .m H. 5 5 HH..m ..... ..... ..... mm..H 7 8 ...H.... ...H.... ...H.... mmmHmmmm ...H.... ...H.... ...H.... 0 0 */