单链表浅析

1. 线性表简介

线性表是一种线性结构,它是由零个或多个数据元素构成的有限序列。线性表的特征是在一个序列中,除了头尾元素,每个元素都有且只有一个直接前驱,有且只有一个直接后继,而序列头元素没有直接前驱,序列尾元素没有直接后继。

数据结构中常见的线性结构有数组、单链表、双链表、循环链表等。线性表中的元素为某种相同的抽象数据类型。可以是C语言的内置类型或结构体,也可以是C++自定义类型。

2. 数组

数组在实际的物理内存上也是连续存储的,数组有上界和下界。C语言中定义一个数组:

数组下标是从0开始的,a[0]对应第一个元素。其中,a[0]称为数组a的下界,a[6]称为数组a的上届。超过这个范围的下标使用数组,将造成数组越界错误
数组的特点是:数据连续,支持快速随机访问。
数组分为固定数组与动态数组。其中固定数组的大小必须在编译时就能够确认,动态数组允许在运行时申请数组内存。复杂点的数组是多维数组,多维数组实际上也是通过一维数组来实现的。在C语言中,可以通过malloc来分配动态数组,C++使用new。另外,C++的标准模板库提供了动态数组类型vector以及内置有固定数组类型array。

Python中list可以被认为是封装好的数组。

3. 单向链表

单向链表是链表的一种。链表由节点所构成,节点内含一个指向下一个节点的指针,节点依次链接成为链表。因此,链表这种数据结构通常在物理内存上是不连续的。链表的通常含有一个头节点,头节点不存放实际的值,它含有一个指针,指向存放元素的第一个节点。

show me the code

class Node():
    """
    单链表中的节点应该具有两个属性:val 和 next。
    val 是当前节点的值,
    next 是指向下一个节点的指针/引用。
    """

    def __init__(self, value):
        # 存放元素数据
        self.val = value
        # next是下一个节点的标识
        self.next = None

设计链表的实现

您可以选择使用单链表或双链表。单链表中的节点应该具有两个属性:valnextval 是当前节点的值,next 是指向下一个节点的指针/引用。如果要使用双向链表,则还需要一个属性 prev 以指示链表中的上一个节点。假设链表中的所有节点都是 0-index 的。

在链表类中实现这些功能:

  • get(index):获取链表中第 index 个节点的值。如果索引无效,则返回-1
  • addAtHead(val):在链表的第一个元素之前添加一个值为 val 的节点。插入后,新节点将成为链表的第一个节点。

  • addAtTail(val):将值为 val 的节点追加到链表的最后一个元素。
  • addAtIndex(index,val):在链表中的第 index 个节点之前添加值为 val 的节点。如果 index 等于链表的长度,则该节点将附加到链表的末尾。如果 index 大于链表长度,则不会插入节点。
  • deleteAtIndex(index):如果索引 index 有效,则删除链表中的第 index 个节点。

show me the code

#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Description about this file:

"""

class Node():
    """
    单链表中的节点应该具有两个属性:val 和 next。
    val 是当前节点的值,
    next 是指向下一个节点的指针/引用。
    """

    def __init__(self, value):
        # 存放元素数据
        self.val = value
        # next是下一个节点的标识
        self.next = None

class SingleLinkList():
    def __init__(self, node=None):
        # 头节点定义为私有变量
        self._head = node

    def is_empty(self):
        # 判断链表是否为空
        if self._head is None:
            return True
        else:
            return False

    def get(self, index: int) -> int:
        """
        获取链表中第 index 个节点的值。如果索引无效,则返回-1
        :param index: 索引值
        :return:
        """
        if self._head is None:
            return -1
        cur = self._head
        for i in range(index):
            if cur.next is None:
                return -1
            cur = cur.next
        return cur.val

    def length(self):
        """
        cur游标,用来移动遍历节点
        count用来计数
        :return: 返回链表的长度
        """
        cur = self._head
        count = 0
        while cur is not None:
            count += 1
            cur = cur.next
        return count

    def travel(self):
        """
        遍历整个链表
        :return:
        """
        cur = self._head
        while cur is not None:
            print(cur.elem, end=‘ ‘)
            cur = cur.next

    def add_at_head(self, val: int) -> None:
        """
        在头部添加一个节点
        :param val:
        :return: None
        """
        # 先创建一个保存item值的节点
        node = Node(val)
        # 判断链表是否为空
        if self._head is None:
            self._head = node
        else:
            # 将新节点的链接域next指向头节点,即_head指向的位置
            node.next = self._head
            # 将链表的头_head指向新节点
            self._head = node

    def add_at_tail(self, val: int) -> None or int:
        """
        在尾部添加一个节点
        :param item:
        :return:
        """
        node = Node(val)
        # 若链表为空,直接将该节点作为链表的第一个元素
        if self._head is None:
            self._head = node
        else:
            cur = self._head
            while cur.next is not None:
                cur = cur.next
            cur.next = node

    def add_at_index(self, index: int, val: int) -> None:
        """
        在指定位置pos添加节点
        pos从0开始
        :param index:
        :param val:
        :return:
        """
        # 若指定位置pos为第一个元素之前,则执行头部插入
        if index <= 0:
            self.add_at_head(val)
        # 若指定位置超过链表尾部,则执行尾部插入
        elif index >= self.length():
            self.add_at_tail(val)
        # 找到指定位置
        else:
            # pre用来指向指定位置pos的前一个位置pos-1,初始从头节点开始移动到指定位置
            pre = self._head
            count = 0
            node = Node(val)
            # 在目标节点的前一位停下
            while count < (index - 1):
                count += 1
                pre = pre.next
            # 先将新节点node的next指向插入位置的节点
            node.next = pre.next
            # 将插入位置的前一个节点的next指向新节点
            pre.next = node

    def delete_at_index(self, index: int) -> None or int:
        """
        如果索引 index 有效,则删除链表中的第 index 个节点。
        :param index: 对应的索引值
        :return: -1表示为异常
        """
        pre = None
        cur = self._head
        if index is 0:
            self._head = None
        for i in range(index):
            if cur.next is None:
                # raise IndexError("越界")
                return -1
            pre = cur
            cur = pre.next
        else:
            pre.next = cur.next

    def search(self, val: int) -> True or False:
        """
        查找节点是否存在
        :param val: 节点的val值
        :return:
        """
        cur = self._head
        while cur is not None:
            if cur.val == val:
                return True
            else:
                cur = cur.next
        return False

if __name__ == ‘__main__‘:
    obj = SingleLinkList()
    obj.add_at_head(1)
    obj.add_at_tail(3)
    obj.add_at_index(1, 2)
    obj.travel()
    obj.delete_at_index(1)
    obj.travel()

链表与顺序表的对比

链表失去了顺序表随机读取的优点,同时链表由于增加了结点的指针域,空间开销比较大,但对存储空间的使用要相对灵活。

链表与顺序表的各种操作复杂度如下所示:

操作 链表 顺序表
访问元素 O(n) O(1)
在头部插入/删除 O(1) O(n)
在尾部插入/删除 O(n) O(1)
在中间插入/删除 O(n) O(n)

参考资料

https://www.cnblogs.com/QG-whz/p/5170147.html

https://blog.csdn.net/weixin_39881922/article/details/80470896

https://leetcode-cn.com/explore/learn/card/linked-list/193/singly-linked-list/741/

原文地址:https://www.cnblogs.com/quegai18/p/10754289.html

时间: 2024-10-30 02:46:17

单链表浅析的相关文章

[算法浅析] 如何在O(1)的时间里删除单链表的结点

题目是这样的:给你一个单链表的表头,再给你其中某个结点的指针,要你删除这个结点,条件是你的程序必须在O(1)的时间内完成删除. 由于有的同学对链表还不是很熟悉,本文尽量描述的通俗易懂,老鸟请直接跳过前面一大段. 链表结构如下: struct node { int val; node* next; }; 题目不是很难,很快就能想到好办法:) 首先回顾一下普通的删除方法,首先通过表头,找到待删除结点(设为B)的前一个结点(设为A),将A的指向改一下就行,然后删除掉B结点就行了.要删除的结点一定要de

线性表之单链表学习小结(初学数据结构必看)

花了好几个小时,详细规划出了整个过程,包括所有基本操作...有什么疑问请下方留言 #include<iostream> using namespace std; #define ElemType char #define ERROR 0 #define OK 1 typedef struct Node { ElemType data; struct Node *next; }Node,*LinkList; void init_linklist(LinkList L)/*对单链表进行初始化*/

单链表逆置

重写单链表逆置,熟能生巧- #include <iostream> #include <cstdlib> using namespace std; typedef struct List{ int num; struct List *next; }ListNode,*pListNode; void display(ListNode *pHead) { while(pHead) { cout<<pHead->num<<"--"; pH

02 单链表

线性表之链式存储---单链表 1 #include <stdio.h> 2 #include <stdlib.h> 3 #include <string.h> 4 5 // 数据结构 6 typedef struct node 7 { 8 int data; 9 struct node *next; 10 }linkList; 11 12 // 创建单链表,并初始化 13 linkList *linkList_init(void) 14 { 15 linkList *l

(单链表)单链表的整体逆序和局部逆序

题目一:将单链表翻转. 思路:有三种方式. 一:用数组存储单链表的值,然后重新逆序赋值,效率较低. 二:利用三个指针,在原来的基础上进行逆序.这种方法比较实用,效率也高. 三:从第2个节点到第N个节点,依次逐节点插入到第1个节点(head节点)之后,最后将第一个节点挪到新表的表尾.需要新建一个链表,这种方法和第二种差不多. 这里我就写出第二种方法,比较实用. 代码(方法二): struct ListNode { int val; ListNode *next; ListNode(int x) :

[c语言]单链表的实现

一.基础知识:链表(线性表的链式存储结构) (1)特点:逻辑关系相邻,物理位置不一定相邻. (2)分类: a.不带头节点 b.带头节点 (3)单链表的存储结构: typedef struct SListNode {  DataType data;  struct SListNode* next; }SListNode; 二.代码实现(因避开使用二级指针,所以代码中使用了c++中的引用):此处构造的为不带头节点的链表 (1)sList.h   #pragma once typedef int Da

单链表基本操作

//头文件 #pragma once #include <stdio.h> #include <assert.h> #include <malloc.h> #include <stdlib.h> typedef int DateType; typedef struct LinkNode {  DateType _data;  struct  LinkNode* _next; } LinkNode; void PrintList(LinkNode* pHead

C++单链表的创建与操作

链表是一种动态数据结构,他的特点是用一组任意的存储单元(可以是连续的,也可以是不连续的)存放数据元素.链表中每一个元素成为“结点”,每一个结点都是由数据域和指针域组成的,每个结点中的指针域指向下一个结点.Head是“头指针”,表示链表的开始,用来指向第一个结点,而最后一个指针的指针域为NULL(空地址),表示链表的结束.可以看出链表结构必须利用指针才能实现,即一个结点中必须包含一个指针变量,用来存放下一个结点的地址.结点中只有一个next指针的链表称为单链表,这是最简单的链表结构. 首先定义一个

每日一题3:判断单链表是否相交

由于单链表的特殊性,如果某一链表与另一链表相交,那么从相交的节点开始,以后两个链表的每个节点都相同,因此判断两个链表是否相交,只需判断每条链表的最后一个节点是否相同即可! #include "stdafx.h" #include <iostream> using namespace std; struct list_node { int data; list_node* next; }; list_node* CreateList(int datas[],int n) {