BM-线性递推板子

//杜教BM
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=1e9+7;
ll powmod(ll a,ll b)
{
ll res=1;
a%=mod;
assert(b>=0);
for(; b; b>>=1)
{
if(b&1)res=res*a%mod;
a=a*a%mod;
}
return res;
}
ll _,n;
namespace linear_seq
{
const int N=10010;
ll res[N],base[N],_c[N],_md[N];
vector<ll> Md;
void mul(ll *a,ll *b,int k)
{
rep(i,0,k+k) _c[i]=0;
rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
for (int i=k+k-1; i>=k; i--) if (_c[i])
rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
rep(i,0,k) a[i]=_c[i];
}
int solve(ll n,VI a,VI b)
{
ll ans=0,pnt=0;
int k=SZ(a);
assert(SZ(a)==SZ(b));
rep(i,0,k) _md[k-1-i]=-a[i];
_md[k]=1;
Md.clear();
rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
rep(i,0,k) res[i]=base[i]=0;
res[0]=1;
while ((1ll<<pnt)<=n) pnt++;
for (int p=pnt; p>=0; p--)
{
mul(res,res,k);
if ((n>>p)&1)
{
for (int i=k-1; i>=0; i--) res[i+1]=res[i];
res[0]=0;
rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
}
}
rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
if (ans<0) ans+=mod;
return ans;
}
VI BM(VI s)
{
VI C(1,1),B(1,1);
int L=0,m=1,b=1;
rep(n,0,SZ(s))
{
ll d=0;
rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
if (d==0) ++m;
else if (2*L<=n)
{
VI T=C;
ll c=mod-d*powmod(b,mod-2)%mod;
while (SZ(C)<SZ(B)+m) C.pb(0);
rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
L=n+1-L;
B=T;
b=d;
m=1;
}
else
{
ll c=mod-d*powmod(b,mod-2)%mod;
while (SZ(C)<SZ(B)+m) C.pb(0);
rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
++m;
}
}
return C;
}
int gao(VI a,ll n)
{
VI c=BM(a);
c.erase(c.begin());
rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
}
};
ll f[205];
int main()
{
ll n,m;
scanf("%lld%lld",&n,&m);
for(int i=1;i<=m;i++) f[i]=1;
for(int i=m;i<=200;i++)
f[i]=(f[i-1]+f[i-m])%mod;
vector<int>v;
n++;
for(int i=1;i<=200;i++)
v.push_back(f[i]);
printf("%lld\n",linear_seq::gao(v,n-1)%mod);
}

原文地址:https://blog.51cto.com/14093713/2361531

时间: 2024-11-06 09:49:28

BM-线性递推板子的相关文章

HDU - 6172:Array Challenge (BM线性递推)

题意:给出,三个函数,h,b,a,然后T次询问,每次给出n,求sqrt(an); 思路:不会推,但是感觉a应该是线性的,这个时候我们就可以用BM线性递推,自己求出前几项,然后放到模板里,就可以求了. 数据范围在1e15,1000组都可以秒过. 那么主要的问题就是得确保是线性的,而且得求出前几项. #include<bits/stdc++.h> using namespace std; #define rep(i,a,n) for (int i=a;i<n;i++) #define per

[HDOJ6172] Array Challenge(线性递推,黑科技)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6172 题意:给一堆东西,就是求个线性递推式,求第n项%1e9+7 杜教板真牛逼啊,线性递推式用某特征值相关的论文板,打表前几项丢进去就出结果了. 1 #include <bits/stdc++.h> 2 using namespace std; 3 4 typedef long long ll; 5 #define rep(i,a,n) for (ll i=a;i<n;i++) 6 #def

多校第九场:贪心+矩阵快速幂中间优化+线性递推&amp;线段树递推

HDU 4968 Improving the GPA 思路:贪心的搞吧!比赛的时候想了好久,然后才发现了点规律,然后乱搞1A. 因为贪心嘛!大的情况就是刚开始每个人的分数都是最大的最小值,即绩点4.0的最低分数85,然后最后一个数设为剩余的分数,然后如果小于60就从第一个分数补到这个分数来,然后最后一个分数还小于60,那就用第二个补--依次往下搞,那时我也不知道这样就搞出答案了,我还没证明这个对不对呢,哈哈. 小的情况:小的情况就是先假设每个人都是绩点最小的最大分数,即绩点2.0的最大分数69,

矩阵乘法优化线性递推

矩阵乘法是线性代数中一块很重要的内容.矩阵乘法的定义很奇怪[1],但正是这种奇怪的性质,让矩阵乘法成为在除了线性代数和其衍生学科(还有诸如矩阵力学之类)外最广泛使用的关于矩阵变换的应用.(什么?FFT不属于矩阵变换吧...) 注: [1]: 矩阵乘法有另外的很多定义,如未说明,指的是中间不带符号的矩阵乘法,即一般矩阵乘积.另有 标量乘积(即所有数乘上一个固定的数),阿达马乘积等,没有那么诡异,但是在大多数问题的用途上也不大. 你不会矩阵乘法?没关系,下一篇会写到的 矩阵乘法的本质 矩阵乘法的本质

利用Cayley-Hamilton theorem 优化矩阵线性递推

平时有关线性递推的题,很多都可以利用矩阵乘法来解k决. 时间复杂度一般是O(K3logn)因此对矩阵的规模限制比较大. 下面介绍一种利用利用Cayley-Hamilton theorem加速矩阵乘法的方法. Cayley-Hamilton theorem: 记矩阵A的特征多项式为f(x). 则有f(A)=0. 证明可以看 维基百科 https://en.wikipedia.org/wiki/Cayley–Hamilton_theorem#A_direct_algebraic_proof 另外我在

根据a(n)/a(n-1)的无理数极限逆推二阶线性递推数列公式

首先看这样一道题目: a(n)=6*a(n-1)-a(n-2),a1=1,a2=5,求b(n)=a(n+1)/a(n)的极限  数列通项两边除以a(n-1) 得: a(n)/a(n-1)=6-a(n-1)/a(n-2) 根据单调有界定理可以证明极限存在 单调性可以用数学归纳法证明,不再赘述 设极限为x 则x=6-1/x x^2-6*x+1=0 解一元二次方程得 x=3+2√2 我举这个例子,是因为,这个例子和2017 ACM-ICPC 亚洲区(乌鲁木齐赛区)网络E题的数列很像,只不过在后面减了个

HDU 5863 cjj&#39;s string game ( 16年多校10 G 题、矩阵快速幂优化线性递推DP )

题目链接 题意 : 有种不同的字符,每种字符有无限个,要求用这k种字符构造两个长度为n的字符串a和b,使得a串和b串的最长公共部分长度恰为m,问方案数 分析 : 直觉是DP 不过当时看到 n 很大.但是 m 很小的时候 发现此题DP并不合适.于是想可能是某种组合数学的问题可以直接公式算 看到题解的我.恍然大悟.对于这种数据.可以考虑一下矩阵快速幂优化的DP 首先要想到线性递推的 DP 式子 最直观的想法就是 dp[i][j] = 到第 i 个位置为止.前面最长匹配长度为 j 的方案数 但是如果仔

杜教BM递推板子

Berlekamp-Massey 算法用于求解常系数线性递推式 #include<bits/stdc++.h> typedef std::vector<int> VI; typedef long long ll; typedef std::pair<int, int> PII; const ll mod = 1000000007; ll powmod(ll a, ll b) { ll res = 1; a %= mod; assert(b >= 0); for(;

Codeforces 1106F Lunar New Year and a Recursive Sequence (数学、线性代数、线性递推、数论、BSGS、扩展欧几里得算法)

哎呀大水题..我写了一个多小时..好没救啊.. 数论板子X合一? 注意: 本文中变量名称区分大小写. 题意: 给一个\(n\)阶递推序列\(f_k=\prod^{n}_{i=1} f_{k-i}b_i\mod P\)其中\(P=998244353\), 输入\(b_1,b_2,...,b_n\)以及已知\(f_1,f_2,...,f_{n-1}=1\), 再给定一个数\(m\)和第\(m\)项的值\(f_m\), 求出一个合法的\(f_n\)值使得按照这个值递推出来的序列满足第\(m\)项的值为

矩阵快速幂优化线性递推

我们熟知的斐波那契数列递推公式是: \(f(n)=f(n-1)+f(n-2)\) 假设我们需要求斐波那契数列的第n项,当n非常大(如n=1e9)的时候,递推肯定超时.我们不妨设: \(\binom{f_{n}}{f_{n-1}}=\begin{pmatrix}a & b\\ c & d\end{pmatrix}\binom{f_{n-1}}{f_{n-2}}\) 将等式右边乘开,得到: \(\binom{af_{n-1}+bf_{n-2}}{cf_{n-1}+df_{n-2}}\) 要使其