Multi-Temporal SAR Data Large-Scale Crop Mapping Based on U-Net Model(利用U-net对多时相SAR影像获得作物图)

对哨兵1号的多时相双极化SAR数据进行预处理,得到18个日期的VV和VH共36景影像,通过ANOVA和JM距离分析,选其中ANOVA得到的F值最高的6景影像。真值用LC8数据和地面调查,目视解译得到标签。将6景影像合到一个数据中即6波段数据,输入到UNET中,网络结构同原始UNet,除了在conv和relu中间加了BN。

这里引发了思考,BN层到底是加在哪里的,因为keras里的conv2d层是可以直接加激活函数的,中间加BN就要拆开写了。提出BN的论文里似乎就是加在了conv和relu中间。其他论文看到没有注意,以后注意一下都是加在哪里的,印象中不都是这样加的。

BN层的主要作用是归一化参数,改善梯度消失的状况,加快收敛,可以使用更大的学习率,不用再考虑正则和dropout。

原文地址:https://www.cnblogs.com/tccbj/p/10831580.html

时间: 2024-10-11 01:28:36

Multi-Temporal SAR Data Large-Scale Crop Mapping Based on U-Net Model(利用U-net对多时相SAR影像获得作物图)的相关文章

Lessons learned developing a practical large scale machine learning system

原文:http://googleresearch.blogspot.jp/2010/04/lessons-learned-developing-practical.html Lessons learned developing a practical large scale machine learning system Tuesday, April 06, 2010 Posted by Simon Tong, Google Research When faced with a hard pre

Machine Learning - XVII. Large Scale Machine Learning大规模机器学习 (Week 10)

http://blog.csdn.net/pipisorry/article/details/44904649 机器学习Machine Learning - Andrew NG courses学习笔记 Large Scale Machine Learning大规模机器学习 Learning With Large Datasets大数据集学习 Stochastic Gradient Descent随机梯度下降 Mini-Batch Gradient Descent迷你批处理梯度下降 Stochas

(原创)Stanford Machine Learning (by Andrew NG) --- (week 10) Large Scale Machine Learning & Application Example

本栏目来源于Andrew NG老师讲解的Machine Learning课程,主要介绍大规模机器学习以及其应用.包括随机梯度下降法.维批量梯度下降法.梯度下降法的收敛.在线学习.map reduce以及应用实例:photo OCR.课程地址为:https://www.coursera.org/course/ml (一)大规模机器学习 从前面的课程我们知道,如果我们的系统是high variance的,那么增加样本数会改善我们的系统,假设现在我们有100万个训练样本,可想而知,如果使用梯度下降法,

Large Scale Metric Learning from Equivalence Constraints (KISSME) CVPR 2012

In this paper, we raise important issues on scalability and the required degree of supervision of existing Mahalanobis metric learning methods. Often rather tedious optimization procedures are applied that become computationally intractable on a larg

Week 10:Large Scale Machine Learning课后习题解答

大家好,我是Mac Jiang,今天和大家分享Coursera-Stanford University-Machine Learning-Week 10:Large Scale Machine Learning的课后习题解答.虽然我的答案通过了系统测试,但是我的分析不一定是正确的,如果各位博友发现错误或有更好的想法,请留言联系,谢谢.希望我的博客对您的学习有所帮助! 这单元,吴恩达老师主要讲了五个方面的内容: 1.随机梯度下降(Stochastic Gradient Descent),比较了随机

论文笔记之:Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation

Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation Google 官方 Blog 链接:https://research.googleblog.com/2016/10/graph-powered-machine-learning-at-google.html 今天讲的是一个基于 streaming approximation 的大规模分布式半监督学习框架,出自 Google . 摘要:众所周

data process for large scale datasets

Kmeans:   总体而言,速度(单线程): yael_kmeans > litekmeans ~ vl_kmeans 1.vl_kemans (win10 + matlab 15 + vs13编译有问题,但win7 + matlab13 +vs12可以) 2.litekmeans (直接使用,single form更快) http://www.cad.zju.edu.cn/home/dengcai/Data/code/litekmeans.m 3.yael_kmeans (multithre

Coursera机器学习-第十周-Large Scale Machine Learning

Gradient Descent with Large Datasets Learning With Large Datasets 我们已经知道,得到一个高效的机器学习系统的最好的方式之一是,用一个低偏差(low bias)的学习算法,然后用很多数据来训练它. 下面是一个区分混淆词组的例子: 但是,大数据存在一个问题,当样本容量m=1,000时还行,但是当m=100,000,000呢?请看一下梯度下降的更新公式: 计算一个θ值需要对1亿个数据进行求和,计算量显然太大,所以时间消耗肯定也就大了.

Node.js: Extend and Maintain Applications + large scale

https://blog.risingstack.com/node-js-mysql-example-handling-hundred-gigabytes-of-data/ My secondary goal with this article is to help you decide if Node.js + MySQL is a good fit for your needs, and to provide help with implementing such a solution. h