PRML

UCLA

http://www.stat.ucla.edu/~sczhu/Courses/UCLA/Stat_231/Stat_231.html

http://cs.nyu.edu/~yann/2010f-G22-2565-001/schedule.html

http://xiaodihou.wordpress.com/2009/11/29/%E5%8F%88%E4%B8%80%E6%AC%A1%E7%9C%8Bbishop%E7%9A%84prml%E7%9C%8B%E5%88%B0%E6%B0%94%E6%80%A5%E8%B4%A5%E5%9D%8F%E2%80%A6%E2%80%A6/

--

http://www.cnblogs.com/xbinworld/tag/PRML/

But one thing I don‘t like about this book is that the author used mathematical notations carelessly.

For example, lower case function p() represents pdf or/and pmf while capital P() represent the probability. The author didn‘t separate this.

Another problem is that a lot of unnecessary mathematical notations were introduced such that at the end of each chapter I always had to go back to the begining to figure out what those notations mean.

时间: 2024-10-09 10:47:10

PRML的相关文章

今天开始学习模式识别与机器学习Pattern Recognition and Machine Learning (PRML),章节5.1,Neural Networks神经网络-前向网络。

话说上一次写这个笔记是13年的事情了···那时候忙着实习,找工作,毕业什么的就没写下去了,现在工作了有半年时间也算稳定了,我会继续把这个笔记写完.其实很多章节都看了,不过还没写出来,先从第5章开始吧,第2-4章比较基础,以后再补! 第5章 Neural Networks 在第3章和第4章,我们已经学过线性的回归和分类模型,这些模型由固定的基函数(basis functions)的线性组合组成.这样的模型具有有用的解析和计算特性,但是因为维度灾难(the curse of dimensionali

CCJ PRML Study Note - Chapter 1.5 : Decision Theory

Chapter 1.5 : Decision Theory Chapter 1.5 : Decision Theory Christopher M. Bishop, PRML, Chapter 1 Introdcution 1. PRML所需要的三论: Probability theory: provides us with a consistent mathematical framework for quantifying and manipulating uncertainty. Deci

CCJ PRML Study Note - Chapter 1 Summary : MLE (Maximum-likelihood Estimate) and Bayesian Approach

Chapter 1 Summary : MLE (Maximum-likelihood Estimate) and Bayesian Approach Chapter 1 Summary : MLE (Maximum-likelihood Estimate) and Bayesian Approach Christopher M. Bishop, PRML, Chapter 1 Introdcution 1. Notations and Logical Relation Training dat

CCJ PRML Study Note - Chapter 1.6 : Information Theory

Chapter 1.6 : Information Theory Chapter 1.6 : Information Theory Christopher M. Bishop, PRML, Chapter 1 Introdcution 1. Information h(x) Given a random variable and we ask how much information is received when we observe a specific value for this va

CCJ PRML Study Note - Chapter 1.3-1.4 : Model Selection & the Curse of Dimensionality

Chapter 1.3-1.4 : Model Selection & the Curse of Dimensionality Chapter 1.3-1.4 : Model Selection & the Curse of Dimensionality Christopher M. Bishop, PRML, Chapter 1 Introdcution 1. Model Selection In our example of polynomial curve fitting using

CCJ PRML Study Note - Chapter 1.2 : Probability Theory

Chapter 1.2 : Probability Theory Chapter 1.2 : Probability Theory Christopher M. Bishop, PRML, Chapter 1 Introdcution Chapter 1.2 : Probability Theory 1. Uncertainty 2. Example discussed through this chapter 3. Basic Terminology 3.1 Probability densi

《PRML》Logistic回归(逻辑回归,LR)的推导

去年一直学习Christopher M. Bishop 大神的<PRML>一书,中间对一些简单的算法进行了推导并用python做了实验.最近拿出来温习,顺便与各位分享下当时的笔记与最近的心得体会. 最后利用python实现的算法,具体如下. 实验结果如下图所示.

机器学习学习笔记 PRML Chapter 2.0 : Prerequisite 2 -Singular Value Decomposition (SVD)

Chapter 2.0 : Prerequisite 2 -Singular Value Decomposition (SVD) Chapter 2.0 : Prerequisite 2 -Singular Value Decomposition (SVD) Christopher M. Bishop, PRML, Chapter 2 Probability Distributions 1. Vector Terminology Orthogonality Two vectors and are

PRML中文版(马春鹏)勘误表

前言: 最近在拜读网上流传的PRML中译版.翻译整体水平很高,应该是国内机器学习的首选读物.因此先向译者马春鹏先生表示致敬.阅读的过程中偶有卡壳,结合英文版原著,原来是有些笔误,根据我阅读进度,本文会不定期更新. 位置:p21 (1.32)下面 原文:把每个实数变量除以区间的宽度△ 建议:把每个实数变量划分为宽度为△的区间 位置:p23 中间 原文:袁术数据集 建议:原始数据集 位置:p23 (1.60) 式 原文:公式抄写有误,右括号位置不对.读者可参考原文 位置:p32 下半部分 原文:然后