1、Install [Anaconda](https://docs.continuum.io/anaconda/install#anaconda-install)
实际上安装了anaconda就已经安装好了jupyter,但是为了便于一些分析,我们配置一些环境。
2、配置环境
conda env create -f environment.yml
其中environment.yml中的内容如下:
name: vdl dependencies: - cycler=0.10.0=py35_0 - decorator=4.0.10=py35_0 - entrypoints=0.2.2=py35_0 - freetype - ipykernel=4.3.1=py35_0 - ipython=5.0.0=py35_0 - ipython_genutils=0.1.0=py35_0 - jinja2=2.8=py35_1 - jsonschema=2.5.1=py35_0 - jupyter=1.0.0=py35_3 - jupyter_client=4.3.0=py35_0 - jupyter_console=5.0.0=py35_0 - jupyter_core=4.1.0=py35_0 - libsodium - markupsafe=0.23=py35_2 - matplotlib=1.5.1=np111py35_0 - mistune - mkl - nbconvert=4.2.0=py35_0 - nbformat=4.0.1=py35_0 - notebook=4.2.1=py35_0 - numpy=1.11.1=py35_0 - openssl - pandas=0.18.1=np111py35_0 - path.py=8.2.1=py35_0 - patsy=0.4.1=py35_0 - pickleshare=0.7.2=py35_0 - pip=8.1.2=py35_0 - prompt_toolkit=1.0.3=py35_0 - pygments=2.1.3=py35_0 - pyparsing=2.1.4=py35_0 - pyqt=4.11.4=py35_4 - python=3.5.2=0 - python-dateutil=2.5.3=py35_0 - pytz=2016.6.1=py35_0 - pyzmq - qt - qtconsole=4.2.1=py35_0 - requests=2.10.0=py35_0 - scipy=0.17.1=np111py35_1 - seaborn=0.7.0=py35_0 - setuptools=23.0.0=py35_0 - simplegeneric=0.8.1=py35_1 - sip=4.18=py35_0 - six=1.10.0=py35_0 - sqlite - statsmodels=0.6.1=np111py35_1 - tk - tornado=4.3=py35_1 - traitlets=4.2.1=py35_0 - wcwidth=0.1.7=py35_0 - wheel=0.29.0=py35_0 - zeromq - zlib - pip: - colorlover==0.2.1 - cufflinks==0.8.2 - ipython-genutils==0.1.0 - ipywidgets==5.2.2 - jupyter-client==4.3.0 - jupyter-console==5.0.0 - jupyter-core==4.1.0 - jupyterlab==0.1.1 - plotly==1.12.4 - prompt-toolkit==1.0.3 - qgrid==0.3.2 - tqdm==4.7.6 - widgetsnbextension==1.2.6
在执行这一步的时候,会报错,原因是因为ipy的源的问题。因此,需要修改pip的源。具体修改方法如下:
(1)在C:\Users\LJY目录下创建一个pip目录,如:C:\Users\xx\pip,并新建文件pip.ini的文件。
(2)在pip.ini文件中添加以下内容即可:(在这里我尝试了豆瓣的源https://pypi.doubanio.com/simple/和阿里的源都不行,只有清华大学的源可以用)
此时重新执行conda env create -f environment.yml 即可。
3、执行:activate vdl
4、执行:jupyter notebook --config jupyter_notebook_config.py
jupyter_notebook_config.py文件的内容如下:
# Configuration file for jupyter-notebook. #------------------------------------------------------------------------------ # Configurable configuration #------------------------------------------------------------------------------ #------------------------------------------------------------------------------ # LoggingConfigurable configuration #------------------------------------------------------------------------------ # A parent class for Configurables that log. # # Subclasses have a log trait, and the default behavior is to get the logger # from the currently running Application. #------------------------------------------------------------------------------ # SingletonConfigurable configuration #------------------------------------------------------------------------------ # A configurable that only allows one instance. # # This class is for classes that should only have one instance of itself or # *any* subclass. To create and retrieve such a class use the # :meth:`SingletonConfigurable.instance` method. #------------------------------------------------------------------------------ # Application configuration #------------------------------------------------------------------------------ # This is an application. # The date format used by logging formatters for %(asctime)s # c.Application.log_datefmt = ‘%Y-%m-%d %H:%M:%S‘ # The Logging format template # c.Application.log_format = ‘[%(name)s]%(highlevel)s %(message)s‘ # Set the log level by value or name. # c.Application.log_level = 30 #------------------------------------------------------------------------------ # JupyterApp configuration #------------------------------------------------------------------------------ # Base class for Jupyter applications # Answer yes to any prompts. c.JupyterApp.answer_yes = True # Full path of a config file. # c.JupyterApp.config_file = ‘‘ # Specify a config file to load. # c.JupyterApp.config_file_name = ‘‘ # Generate default config file. # c.JupyterApp.generate_config = False #------------------------------------------------------------------------------ # NotebookApp configuration #------------------------------------------------------------------------------ # Set the Access-Control-Allow-Credentials: true header # c.NotebookApp.allow_credentials = False # Set the Access-Control-Allow-Origin header # # Use ‘*‘ to allow any origin to access your server. # # Takes precedence over allow_origin_pat. # c.NotebookApp.allow_origin = ‘‘ # Use a regular expression for the Access-Control-Allow-Origin header # # Requests from an origin matching the expression will get replies with: # # Access-Control-Allow-Origin: origin # # where `origin` is the origin of the request. # # Ignored if allow_origin is set. # c.NotebookApp.allow_origin_pat = ‘‘ # DEPRECATED use base_url # c.NotebookApp.base_project_url = ‘/‘ # The base URL for the notebook server. # # Leading and trailing slashes can be omitted, and will automatically be added. # c.NotebookApp.base_url = ‘/‘ # Specify what command to use to invoke a web browser when opening the notebook. # If not specified, the default browser will be determined by the `webbrowser` # standard library module, which allows setting of the BROWSER environment # variable to override it. # c.NotebookApp.browser = ‘‘ # The full path to an SSL/TLS certificate file. # c.NotebookApp.certfile = ‘‘ # The full path to a certificate authority certifificate for SSL/TLS client # authentication. # c.NotebookApp.client_ca = ‘‘ # The config manager class to use # c.NotebookApp.config_manager_class = ‘notebook.services.config.manager.ConfigManager‘ # The notebook manager class to use. # c.NotebookApp.contents_manager_class = ‘notebook.services.contents.filemanager.FileContentsManager‘ # Extra keyword arguments to pass to `set_secure_cookie`. See tornado‘s # set_secure_cookie docs for details. # c.NotebookApp.cookie_options = {} # The random bytes used to secure cookies. By default this is a new random # number every time you start the Notebook. Set it to a value in a config file # to enable logins to persist across server sessions. # # Note: Cookie secrets should be kept private, do not share config files with # cookie_secret stored in plaintext (you can read the value from a file). # c.NotebookApp.cookie_secret = b‘‘ # The file where the cookie secret is stored. # c.NotebookApp.cookie_secret_file = ‘‘ # The default URL to redirect to from `/` # c.NotebookApp.default_url = ‘/tree‘ # Whether to enable MathJax for typesetting math/TeX # # MathJax is the javascript library Jupyter uses to render math/LaTeX. It is # very large, so you may want to disable it if you have a slow internet # connection, or for offline use of the notebook. # # When disabled, equations etc. will appear as their untransformed TeX source. # c.NotebookApp.enable_mathjax = True # extra paths to look for Javascript notebook extensions # c.NotebookApp.extra_nbextensions_path = [] # Extra paths to search for serving static files. # # This allows adding javascript/css to be available from the notebook server # machine, or overriding individual files in the IPython # c.NotebookApp.extra_static_paths = [] # Extra paths to search for serving jinja templates. # # Can be used to override templates from notebook.templates. # c.NotebookApp.extra_template_paths = [] # # c.NotebookApp.file_to_run = ‘‘ # Use minified JS file or not, mainly use during dev to avoid JS recompilation # c.NotebookApp.ignore_minified_js = False # (bytes/sec) Maximum rate at which messages can be sent on iopub before they # are limited. # c.NotebookApp.iopub_data_rate_limit = 0 # (msg/sec) Maximum rate at which messages can be sent on iopub before they are # limited. # c.NotebookApp.iopub_msg_rate_limit = 0 # The IP address the notebook server will listen on. # c.NotebookApp.ip = ‘localhost‘ # Supply extra arguments that will be passed to Jinja environment. # c.NotebookApp.jinja_environment_options = {} # Extra variables to supply to jinja templates when rendering. # c.NotebookApp.jinja_template_vars = {} # The kernel manager class to use. # c.NotebookApp.kernel_manager_class = ‘notebook.services.kernels.kernelmanager.MappingKernelManager‘ # The kernel spec manager class to use. Should be a subclass of # `jupyter_client.kernelspec.KernelSpecManager`. # # The Api of KernelSpecManager is provisional and might change without warning # between this version of Jupyter and the next stable one. # c.NotebookApp.kernel_spec_manager_class = ‘jupyter_client.kernelspec.KernelSpecManager‘ # The full path to a private key file for usage with SSL/TLS. # c.NotebookApp.keyfile = ‘‘ # The login handler class to use. # c.NotebookApp.login_handler_class = ‘notebook.auth.login.LoginHandler‘ # The logout handler class to use. # c.NotebookApp.logout_handler_class = ‘notebook.auth.logout.LogoutHandler‘ # The url for MathJax.js. # c.NotebookApp.mathjax_url = ‘‘ # Dict of Python modules to load as notebook server extensions.Entry values can # be used to enable and disable the loading ofthe extensions. # c.NotebookApp.nbserver_extensions = {} # The directory to use for notebooks and kernels. c.NotebookApp.notebook_dir = ‘sessions/‘ # Whether to open in a browser after starting. The specific browser used is # platform dependent and determined by the python standard library `webbrowser` # module, unless it is overridden using the --browser (NotebookApp.browser) # configuration option. # c.NotebookApp.open_browser = True # Hashed password to use for web authentication. # # To generate, type in a python/IPython shell: # # from notebook.auth import passwd; passwd() # # The string should be of the form type:salt:hashed-password. # c.NotebookApp.password = ‘‘ # The port the notebook server will listen on. # c.NotebookApp.port = 8888 # The number of additional ports to try if the specified port is not available. # c.NotebookApp.port_retries = 50 # (sec) Time window used to check the message and data rate limits. # c.NotebookApp.rate_limit_window = 1.0 # Reraise exceptions encountered loading server extensions? # c.NotebookApp.reraise_server_extension_failures = False # DEPRECATED use the nbserver_extensions dict instead # c.NotebookApp.server_extensions = [] # The session manager class to use. # c.NotebookApp.session_manager_class = ‘notebook.services.sessions.sessionmanager.SessionManager‘ # Supply SSL options for the tornado HTTPServer. See the tornado docs for # details. # c.NotebookApp.ssl_options = {} # Supply overrides for the tornado.web.Application that the Jupyter notebook # uses. # c.NotebookApp.tornado_settings = {} # Whether to trust or not X-Scheme/X-Forwarded-Proto and X-Real-Ip/X-Forwarded- # For headerssent by the upstream reverse proxy. Necessary if the proxy handles # SSL # c.NotebookApp.trust_xheaders = False # DEPRECATED, use tornado_settings # c.NotebookApp.webapp_settings = {} # The base URL for websockets, if it differs from the HTTP server (hint: it # almost certainly doesn‘t). # # Should be in the form of an HTTP origin: ws[s]://hostname[:port] # c.NotebookApp.websocket_url = ‘‘ #------------------------------------------------------------------------------ # ConnectionFileMixin configuration #------------------------------------------------------------------------------ # Mixin for configurable classes that work with connection files # JSON file in which to store connection info [default: kernel-<pid>.json] # # This file will contain the IP, ports, and authentication key needed to connect # clients to this kernel. By default, this file will be created in the security # dir of the current profile, but can be specified by absolute path. # c.ConnectionFileMixin.connection_file = ‘‘ # set the control (ROUTER) port [default: random] # c.ConnectionFileMixin.control_port = 0 # set the heartbeat port [default: random] # c.ConnectionFileMixin.hb_port = 0 # set the iopub (PUB) port [default: random] # c.ConnectionFileMixin.iopub_port = 0 # Set the kernel‘s IP address [default localhost]. If the IP address is # something other than localhost, then Consoles on other machines will be able # to connect to the Kernel, so be careful! # c.ConnectionFileMixin.ip = ‘‘ # set the shell (ROUTER) port [default: random] # c.ConnectionFileMixin.shell_port = 0 # set the stdin (ROUTER) port [default: random] # c.ConnectionFileMixin.stdin_port = 0 # # c.ConnectionFileMixin.transport = ‘tcp‘ #------------------------------------------------------------------------------ # KernelManager configuration #------------------------------------------------------------------------------ # Manages a single kernel in a subprocess on this host. # # This version starts kernels with Popen. # Should we autorestart the kernel if it dies. # c.KernelManager.autorestart = True # DEPRECATED: Use kernel_name instead. # # The Popen Command to launch the kernel. Override this if you have a custom # kernel. If kernel_cmd is specified in a configuration file, Jupyter does not # pass any arguments to the kernel, because it cannot make any assumptions about # the arguments that the kernel understands. In particular, this means that the # kernel does not receive the option --debug if it given on the Jupyter command # line. # c.KernelManager.kernel_cmd = [] #------------------------------------------------------------------------------ # Session configuration #------------------------------------------------------------------------------ # Object for handling serialization and sending of messages. # # The Session object handles building messages and sending them with ZMQ sockets # or ZMQStream objects. Objects can communicate with each other over the # network via Session objects, and only need to work with the dict-based IPython # message spec. The Session will handle serialization/deserialization, security, # and metadata. # # Sessions support configurable serialization via packer/unpacker traits, and # signing with HMAC digests via the key/keyfile traits. # # Parameters ---------- # # debug : bool # whether to trigger extra debugging statements # packer/unpacker : str : ‘json‘, ‘pickle‘ or import_string # importstrings for methods to serialize message parts. If just # ‘json‘ or ‘pickle‘, predefined JSON and pickle packers will be used. # Otherwise, the entire importstring must be used. # # The functions must accept at least valid JSON input, and output *bytes*. # # For example, to use msgpack: # packer = ‘msgpack.packb‘, unpacker=‘msgpack.unpackb‘ # pack/unpack : callables # You can also set the pack/unpack callables for serialization directly. # session : bytes # the ID of this Session object. The default is to generate a new UUID. # username : unicode # username added to message headers. The default is to ask the OS. # key : bytes # The key used to initialize an HMAC signature. If unset, messages # will not be signed or checked. # keyfile : filepath # The file containing a key. If this is set, `key` will be initialized # to the contents of the file. # Threshold (in bytes) beyond which an object‘s buffer should be extracted to # avoid pickling. # c.Session.buffer_threshold = 1024 # Whether to check PID to protect against calls after fork. # # This check can be disabled if fork-safety is handled elsewhere. # c.Session.check_pid = True # Threshold (in bytes) beyond which a buffer should be sent without copying. # c.Session.copy_threshold = 65536 # Debug output in the Session # c.Session.debug = False # The maximum number of digests to remember. # # The digest history will be culled when it exceeds this value. # c.Session.digest_history_size = 65536 # The maximum number of items for a container to be introspected for custom # serialization. Containers larger than this are pickled outright. # c.Session.item_threshold = 64 # execution key, for signing messages. # c.Session.key = b‘‘ # path to file containing execution key. # c.Session.keyfile = ‘‘ # Metadata dictionary, which serves as the default top-level metadata dict for # each message. # c.Session.metadata = {} # The name of the packer for serializing messages. Should be one of ‘json‘, # ‘pickle‘, or an import name for a custom callable serializer. # c.Session.packer = ‘json‘ # The UUID identifying this session. # c.Session.session = ‘‘ # The digest scheme used to construct the message signatures. Must have the form # ‘hmac-HASH‘. # c.Session.signature_scheme = ‘hmac-sha256‘ # The name of the unpacker for unserializing messages. Only used with custom # functions for `packer`. # c.Session.unpacker = ‘json‘ # Username for the Session. Default is your system username. # c.Session.username = ‘io‘ #------------------------------------------------------------------------------ # MultiKernelManager configuration #------------------------------------------------------------------------------ # A class for managing multiple kernels. # The name of the default kernel to start # c.MultiKernelManager.default_kernel_name = ‘python3‘ # The kernel manager class. This is configurable to allow subclassing of the # KernelManager for customized behavior. # c.MultiKernelManager.kernel_manager_class = ‘jupyter_client.ioloop.IOLoopKernelManager‘ #------------------------------------------------------------------------------ # MappingKernelManager configuration #------------------------------------------------------------------------------ # A KernelManager that handles notebook mapping and HTTP error handling # # c.MappingKernelManager.root_dir = ‘‘ #------------------------------------------------------------------------------ # ContentsManager configuration #------------------------------------------------------------------------------ # Base class for serving files and directories. # # This serves any text or binary file, as well as directories, with special # handling for JSON notebook documents. # # Most APIs take a path argument, which is always an API-style unicode path, and # always refers to a directory. # # - unicode, not url-escaped # - ‘/‘-separated # - leading and trailing ‘/‘ will be stripped # - if unspecified, path defaults to ‘‘, # indicating the root path. # # c.ContentsManager.checkpoints = None # # c.ContentsManager.checkpoints_class = ‘notebook.services.contents.checkpoints.Checkpoints‘ # # c.ContentsManager.checkpoints_kwargs = {} # Glob patterns to hide in file and directory listings. # c.ContentsManager.hide_globs = [‘__pycache__‘, ‘*.pyc‘, ‘*.pyo‘, ‘.DS_Store‘, ‘*.so‘, ‘*.dylib‘, ‘*~‘] # Python callable or importstring thereof # # To be called on a contents model prior to save. # # This can be used to process the structure, such as removing notebook outputs # or other side effects that should not be saved. # # It will be called as (all arguments passed by keyword):: # # hook(path=path, model=model, contents_manager=self) # # - model: the model to be saved. Includes file contents. # Modifying this dict will affect the file that is stored. # - path: the API path of the save destination # - contents_manager: this ContentsManager instance # c.ContentsManager.pre_save_hook = None # The base name used when creating untitled directories. # c.ContentsManager.untitled_directory = ‘Untitled Folder‘ # The base name used when creating untitled files. # c.ContentsManager.untitled_file = ‘untitled‘ # The base name used when creating untitled notebooks. # c.ContentsManager.untitled_notebook = ‘Untitled‘ #------------------------------------------------------------------------------ # FileManagerMixin configuration #------------------------------------------------------------------------------ # Mixin for ContentsAPI classes that interact with the filesystem. # # Provides facilities for reading, writing, and copying both notebooks and # generic files. # # Shared by FileContentsManager and FileCheckpoints. # # Note ---- Classes using this mixin must provide the following attributes: # # root_dir : unicode # A directory against against which API-style paths are to be resolved. # # log : logging.Logger # By default notebooks are saved on disk on a temporary file and then if # succefully written, it replaces the old ones. This procedure, namely # ‘atomic_writing‘, causes some bugs on file system whitout operation order # enforcement (like some networked fs). If set to False, the new notebook is # written directly on the old one which could fail (eg: full filesystem or quota # ) # c.FileManagerMixin.use_atomic_writing = True #------------------------------------------------------------------------------ # FileContentsManager configuration #------------------------------------------------------------------------------ # Python callable or importstring thereof # # to be called on the path of a file just saved. # # This can be used to process the file on disk, such as converting the notebook # to a script or HTML via nbconvert. # # It will be called as (all arguments passed by keyword):: # # hook(os_path=os_path, model=model, contents_manager=instance) # # - path: the filesystem path to the file just written - model: the model # representing the file - contents_manager: this ContentsManager instance # c.FileContentsManager.post_save_hook = None # # c.FileContentsManager.root_dir = ‘‘ # DEPRECATED, use post_save_hook. Will be removed in Notebook 5.0 # c.FileContentsManager.save_script = False #------------------------------------------------------------------------------ # NotebookNotary configuration #------------------------------------------------------------------------------ # A class for computing and verifying notebook signatures. # The hashing algorithm used to sign notebooks. # c.NotebookNotary.algorithm = ‘sha256‘ # The number of notebook signatures to cache. When the number of signatures # exceeds this value, the oldest 25% of signatures will be culled. # c.NotebookNotary.cache_size = 65535 # The sqlite file in which to store notebook signatures. By default, this will # be in your Jupyter runtime directory. You can set it to ‘:memory:‘ to disable # sqlite writing to the filesystem. # c.NotebookNotary.db_file = ‘‘ # The secret key with which notebooks are signed. # c.NotebookNotary.secret = b‘‘ # The file where the secret key is stored. # c.NotebookNotary.secret_file = ‘‘ #------------------------------------------------------------------------------ # KernelSpecManager configuration #------------------------------------------------------------------------------ # If there is no Python kernelspec registered and the IPython kernel is # available, ensure it is added to the spec list. # c.KernelSpecManager.ensure_native_kernel = True # The kernel spec class. This is configurable to allow subclassing of the # KernelSpecManager for customized behavior. # c.KernelSpecManager.kernel_spec_class = ‘jupyter_client.kernelspec.KernelSpec‘ # Whitelist of allowed kernel names. # # By default, all installed kernels are allowed. # c.KernelSpecManager.whitelist = set()
6、在我们的代码中,有时候想执行grid函数时,会出现错误:“Widget Javascript not detected. It may not be installed properly. ”
出现这个原因应该是没有安装ipywidgets。于是就安装:conda install -c conda-forge ipywidgets
安装成功后,执行:jupyter nbextension enable --py widgetsnbextension 后如下所示:
此时,等待一会,在执行grid函数时就不会报错额。