window下安装jupyter

1、Install [Anaconda](https://docs.continuum.io/anaconda/install#anaconda-install)

实际上安装了anaconda就已经安装好了jupyter,但是为了便于一些分析,我们配置一些环境。

2、配置环境

conda env create -f environment.yml

其中environment.yml中的内容如下:

name: vdl
dependencies:
- cycler=0.10.0=py35_0
- decorator=4.0.10=py35_0
- entrypoints=0.2.2=py35_0
- freetype
- ipykernel=4.3.1=py35_0
- ipython=5.0.0=py35_0
- ipython_genutils=0.1.0=py35_0
- jinja2=2.8=py35_1
- jsonschema=2.5.1=py35_0
- jupyter=1.0.0=py35_3
- jupyter_client=4.3.0=py35_0
- jupyter_console=5.0.0=py35_0
- jupyter_core=4.1.0=py35_0
- libsodium
- markupsafe=0.23=py35_2
- matplotlib=1.5.1=np111py35_0
- mistune
- mkl
- nbconvert=4.2.0=py35_0
- nbformat=4.0.1=py35_0
- notebook=4.2.1=py35_0
- numpy=1.11.1=py35_0
- openssl
- pandas=0.18.1=np111py35_0
- path.py=8.2.1=py35_0
- patsy=0.4.1=py35_0
- pickleshare=0.7.2=py35_0
- pip=8.1.2=py35_0
- prompt_toolkit=1.0.3=py35_0
- pygments=2.1.3=py35_0
- pyparsing=2.1.4=py35_0
- pyqt=4.11.4=py35_4
- python=3.5.2=0
- python-dateutil=2.5.3=py35_0
- pytz=2016.6.1=py35_0
- pyzmq
- qt
- qtconsole=4.2.1=py35_0
- requests=2.10.0=py35_0
- scipy=0.17.1=np111py35_1
- seaborn=0.7.0=py35_0
- setuptools=23.0.0=py35_0
- simplegeneric=0.8.1=py35_1
- sip=4.18=py35_0
- six=1.10.0=py35_0
- sqlite
- statsmodels=0.6.1=np111py35_1
- tk
- tornado=4.3=py35_1
- traitlets=4.2.1=py35_0
- wcwidth=0.1.7=py35_0
- wheel=0.29.0=py35_0
- zeromq
- zlib
- pip:
  - colorlover==0.2.1
  - cufflinks==0.8.2
  - ipython-genutils==0.1.0
  - ipywidgets==5.2.2
  - jupyter-client==4.3.0
  - jupyter-console==5.0.0
  - jupyter-core==4.1.0
  - jupyterlab==0.1.1
  - plotly==1.12.4
  - prompt-toolkit==1.0.3
  - qgrid==0.3.2
  - tqdm==4.7.6
  - widgetsnbextension==1.2.6

在执行这一步的时候,会报错,原因是因为ipy的源的问题。因此,需要修改pip的源。具体修改方法如下:

(1)在C:\Users\LJY目录下创建一个pip目录,如:C:\Users\xx\pip,并新建文件pip.ini的文件。

(2)在pip.ini文件中添加以下内容即可:(在这里我尝试了豆瓣的源https://pypi.doubanio.com/simple/和阿里的源都不行,只有清华大学的源可以用)

[global]
timeout = 6000
index-url = https://pypi.tuna.tsinghua.edu.cn/simple/
trusted-host = https://pypi.tuna.tsinghua.edu.cn/simple/

此时重新执行conda env create -f environment.yml 即可。

3、执行:activate vdl

4、执行:jupyter notebook --config jupyter_notebook_config.py

jupyter_notebook_config.py文件的内容如下:

# Configuration file for jupyter-notebook.

#------------------------------------------------------------------------------
# Configurable configuration
#------------------------------------------------------------------------------

#------------------------------------------------------------------------------
# LoggingConfigurable configuration
#------------------------------------------------------------------------------

# A parent class for Configurables that log.
#
# Subclasses have a log trait, and the default behavior is to get the logger
# from the currently running Application.

#------------------------------------------------------------------------------
# SingletonConfigurable configuration
#------------------------------------------------------------------------------

# A configurable that only allows one instance.
#
# This class is for classes that should only have one instance of itself or
# *any* subclass. To create and retrieve such a class use the
# :meth:`SingletonConfigurable.instance` method.

#------------------------------------------------------------------------------
# Application configuration
#------------------------------------------------------------------------------

# This is an application.

# The date format used by logging formatters for %(asctime)s
# c.Application.log_datefmt = ‘%Y-%m-%d %H:%M:%S‘

# The Logging format template
# c.Application.log_format = ‘[%(name)s]%(highlevel)s %(message)s‘

# Set the log level by value or name.
# c.Application.log_level = 30

#------------------------------------------------------------------------------
# JupyterApp configuration
#------------------------------------------------------------------------------

# Base class for Jupyter applications

# Answer yes to any prompts.
c.JupyterApp.answer_yes = True

# Full path of a config file.
# c.JupyterApp.config_file = ‘‘

# Specify a config file to load.
# c.JupyterApp.config_file_name = ‘‘

# Generate default config file.
# c.JupyterApp.generate_config = False

#------------------------------------------------------------------------------
# NotebookApp configuration
#------------------------------------------------------------------------------

# Set the Access-Control-Allow-Credentials: true header
# c.NotebookApp.allow_credentials = False

# Set the Access-Control-Allow-Origin header
#
# Use ‘*‘ to allow any origin to access your server.
#
# Takes precedence over allow_origin_pat.
# c.NotebookApp.allow_origin = ‘‘

# Use a regular expression for the Access-Control-Allow-Origin header
#
# Requests from an origin matching the expression will get replies with:
#
#     Access-Control-Allow-Origin: origin
#
# where `origin` is the origin of the request.
#
# Ignored if allow_origin is set.
# c.NotebookApp.allow_origin_pat = ‘‘

# DEPRECATED use base_url
# c.NotebookApp.base_project_url = ‘/‘

# The base URL for the notebook server.
#
# Leading and trailing slashes can be omitted, and will automatically be added.
# c.NotebookApp.base_url = ‘/‘

# Specify what command to use to invoke a web browser when opening the notebook.
# If not specified, the default browser will be determined by the `webbrowser`
# standard library module, which allows setting of the BROWSER environment
# variable to override it.
# c.NotebookApp.browser = ‘‘

# The full path to an SSL/TLS certificate file.
# c.NotebookApp.certfile = ‘‘

# The full path to a certificate authority certifificate for SSL/TLS client
# authentication.
# c.NotebookApp.client_ca = ‘‘

# The config manager class to use
# c.NotebookApp.config_manager_class = ‘notebook.services.config.manager.ConfigManager‘

# The notebook manager class to use.
# c.NotebookApp.contents_manager_class = ‘notebook.services.contents.filemanager.FileContentsManager‘

# Extra keyword arguments to pass to `set_secure_cookie`. See tornado‘s
# set_secure_cookie docs for details.
# c.NotebookApp.cookie_options = {}

# The random bytes used to secure cookies. By default this is a new random
# number every time you start the Notebook. Set it to a value in a config file
# to enable logins to persist across server sessions.
#
# Note: Cookie secrets should be kept private, do not share config files with
# cookie_secret stored in plaintext (you can read the value from a file).
# c.NotebookApp.cookie_secret = b‘‘

# The file where the cookie secret is stored.
# c.NotebookApp.cookie_secret_file = ‘‘

# The default URL to redirect to from `/`
# c.NotebookApp.default_url = ‘/tree‘

# Whether to enable MathJax for typesetting math/TeX
#
# MathJax is the javascript library Jupyter uses to render math/LaTeX. It is
# very large, so you may want to disable it if you have a slow internet
# connection, or for offline use of the notebook.
#
# When disabled, equations etc. will appear as their untransformed TeX source.
# c.NotebookApp.enable_mathjax = True

# extra paths to look for Javascript notebook extensions
# c.NotebookApp.extra_nbextensions_path = []

# Extra paths to search for serving static files.
#
# This allows adding javascript/css to be available from the notebook server
# machine, or overriding individual files in the IPython
# c.NotebookApp.extra_static_paths = []

# Extra paths to search for serving jinja templates.
#
# Can be used to override templates from notebook.templates.
# c.NotebookApp.extra_template_paths = []

#
# c.NotebookApp.file_to_run = ‘‘

# Use minified JS file or not, mainly use during dev to avoid JS recompilation
# c.NotebookApp.ignore_minified_js = False

# (bytes/sec) Maximum rate at which messages can be sent on iopub before they
# are limited.
# c.NotebookApp.iopub_data_rate_limit = 0

# (msg/sec) Maximum rate at which messages can be sent on iopub before they are
# limited.
# c.NotebookApp.iopub_msg_rate_limit = 0

# The IP address the notebook server will listen on.
# c.NotebookApp.ip = ‘localhost‘

# Supply extra arguments that will be passed to Jinja environment.
# c.NotebookApp.jinja_environment_options = {}

# Extra variables to supply to jinja templates when rendering.
# c.NotebookApp.jinja_template_vars = {}

# The kernel manager class to use.
# c.NotebookApp.kernel_manager_class = ‘notebook.services.kernels.kernelmanager.MappingKernelManager‘

# The kernel spec manager class to use. Should be a subclass of
# `jupyter_client.kernelspec.KernelSpecManager`.
#
# The Api of KernelSpecManager is provisional and might change without warning
# between this version of Jupyter and the next stable one.
# c.NotebookApp.kernel_spec_manager_class = ‘jupyter_client.kernelspec.KernelSpecManager‘

# The full path to a private key file for usage with SSL/TLS.
# c.NotebookApp.keyfile = ‘‘

# The login handler class to use.
# c.NotebookApp.login_handler_class = ‘notebook.auth.login.LoginHandler‘

# The logout handler class to use.
# c.NotebookApp.logout_handler_class = ‘notebook.auth.logout.LogoutHandler‘

# The url for MathJax.js.
# c.NotebookApp.mathjax_url = ‘‘

# Dict of Python modules to load as notebook server extensions.Entry values can
# be used to enable and disable the loading ofthe extensions.
# c.NotebookApp.nbserver_extensions = {}

# The directory to use for notebooks and kernels.
c.NotebookApp.notebook_dir = ‘sessions/‘

# Whether to open in a browser after starting. The specific browser used is
# platform dependent and determined by the python standard library `webbrowser`
# module, unless it is overridden using the --browser (NotebookApp.browser)
# configuration option.
# c.NotebookApp.open_browser = True

# Hashed password to use for web authentication.
#
# To generate, type in a python/IPython shell:
#
#   from notebook.auth import passwd; passwd()
#
# The string should be of the form type:salt:hashed-password.
# c.NotebookApp.password = ‘‘

# The port the notebook server will listen on.
# c.NotebookApp.port = 8888

# The number of additional ports to try if the specified port is not available.
# c.NotebookApp.port_retries = 50

# (sec) Time window used to  check the message and data rate limits.
# c.NotebookApp.rate_limit_window = 1.0

# Reraise exceptions encountered loading server extensions?
# c.NotebookApp.reraise_server_extension_failures = False

# DEPRECATED use the nbserver_extensions dict instead
# c.NotebookApp.server_extensions = []

# The session manager class to use.
# c.NotebookApp.session_manager_class = ‘notebook.services.sessions.sessionmanager.SessionManager‘

# Supply SSL options for the tornado HTTPServer. See the tornado docs for
# details.
# c.NotebookApp.ssl_options = {}

# Supply overrides for the tornado.web.Application that the Jupyter notebook
# uses.
# c.NotebookApp.tornado_settings = {}

# Whether to trust or not X-Scheme/X-Forwarded-Proto and X-Real-Ip/X-Forwarded-
# For headerssent by the upstream reverse proxy. Necessary if the proxy handles
# SSL
# c.NotebookApp.trust_xheaders = False

# DEPRECATED, use tornado_settings
# c.NotebookApp.webapp_settings = {}

# The base URL for websockets, if it differs from the HTTP server (hint: it
# almost certainly doesn‘t).
#
# Should be in the form of an HTTP origin: ws[s]://hostname[:port]
# c.NotebookApp.websocket_url = ‘‘

#------------------------------------------------------------------------------
# ConnectionFileMixin configuration
#------------------------------------------------------------------------------

# Mixin for configurable classes that work with connection files

# JSON file in which to store connection info [default: kernel-<pid>.json]
#
# This file will contain the IP, ports, and authentication key needed to connect
# clients to this kernel. By default, this file will be created in the security
# dir of the current profile, but can be specified by absolute path.
# c.ConnectionFileMixin.connection_file = ‘‘

# set the control (ROUTER) port [default: random]
# c.ConnectionFileMixin.control_port = 0

# set the heartbeat port [default: random]
# c.ConnectionFileMixin.hb_port = 0

# set the iopub (PUB) port [default: random]
# c.ConnectionFileMixin.iopub_port = 0

# Set the kernel‘s IP address [default localhost]. If the IP address is
# something other than localhost, then Consoles on other machines will be able
# to connect to the Kernel, so be careful!
# c.ConnectionFileMixin.ip = ‘‘

# set the shell (ROUTER) port [default: random]
# c.ConnectionFileMixin.shell_port = 0

# set the stdin (ROUTER) port [default: random]
# c.ConnectionFileMixin.stdin_port = 0

#
# c.ConnectionFileMixin.transport = ‘tcp‘

#------------------------------------------------------------------------------
# KernelManager configuration
#------------------------------------------------------------------------------

# Manages a single kernel in a subprocess on this host.
#
# This version starts kernels with Popen.

# Should we autorestart the kernel if it dies.
# c.KernelManager.autorestart = True

# DEPRECATED: Use kernel_name instead.
#
# The Popen Command to launch the kernel. Override this if you have a custom
# kernel. If kernel_cmd is specified in a configuration file, Jupyter does not
# pass any arguments to the kernel, because it cannot make any assumptions about
# the arguments that the kernel understands. In particular, this means that the
# kernel does not receive the option --debug if it given on the Jupyter command
# line.
# c.KernelManager.kernel_cmd = []

#------------------------------------------------------------------------------
# Session configuration
#------------------------------------------------------------------------------

# Object for handling serialization and sending of messages.
#
# The Session object handles building messages and sending them with ZMQ sockets
# or ZMQStream objects.  Objects can communicate with each other over the
# network via Session objects, and only need to work with the dict-based IPython
# message spec. The Session will handle serialization/deserialization, security,
# and metadata.
#
# Sessions support configurable serialization via packer/unpacker traits, and
# signing with HMAC digests via the key/keyfile traits.
#
# Parameters ----------
#
# debug : bool
#     whether to trigger extra debugging statements
# packer/unpacker : str : ‘json‘, ‘pickle‘ or import_string
#     importstrings for methods to serialize message parts.  If just
#     ‘json‘ or ‘pickle‘, predefined JSON and pickle packers will be used.
#     Otherwise, the entire importstring must be used.
#
#     The functions must accept at least valid JSON input, and output *bytes*.
#
#     For example, to use msgpack:
#     packer = ‘msgpack.packb‘, unpacker=‘msgpack.unpackb‘
# pack/unpack : callables
#     You can also set the pack/unpack callables for serialization directly.
# session : bytes
#     the ID of this Session object.  The default is to generate a new UUID.
# username : unicode
#     username added to message headers.  The default is to ask the OS.
# key : bytes
#     The key used to initialize an HMAC signature.  If unset, messages
#     will not be signed or checked.
# keyfile : filepath
#     The file containing a key.  If this is set, `key` will be initialized
#     to the contents of the file.

# Threshold (in bytes) beyond which an object‘s buffer should be extracted to
# avoid pickling.
# c.Session.buffer_threshold = 1024

# Whether to check PID to protect against calls after fork.
#
# This check can be disabled if fork-safety is handled elsewhere.
# c.Session.check_pid = True

# Threshold (in bytes) beyond which a buffer should be sent without copying.
# c.Session.copy_threshold = 65536

# Debug output in the Session
# c.Session.debug = False

# The maximum number of digests to remember.
#
# The digest history will be culled when it exceeds this value.
# c.Session.digest_history_size = 65536

# The maximum number of items for a container to be introspected for custom
# serialization. Containers larger than this are pickled outright.
# c.Session.item_threshold = 64

# execution key, for signing messages.
# c.Session.key = b‘‘

# path to file containing execution key.
# c.Session.keyfile = ‘‘

# Metadata dictionary, which serves as the default top-level metadata dict for
# each message.
# c.Session.metadata = {}

# The name of the packer for serializing messages. Should be one of ‘json‘,
# ‘pickle‘, or an import name for a custom callable serializer.
# c.Session.packer = ‘json‘

# The UUID identifying this session.
# c.Session.session = ‘‘

# The digest scheme used to construct the message signatures. Must have the form
# ‘hmac-HASH‘.
# c.Session.signature_scheme = ‘hmac-sha256‘

# The name of the unpacker for unserializing messages. Only used with custom
# functions for `packer`.
# c.Session.unpacker = ‘json‘

# Username for the Session. Default is your system username.
# c.Session.username = ‘io‘

#------------------------------------------------------------------------------
# MultiKernelManager configuration
#------------------------------------------------------------------------------

# A class for managing multiple kernels.

# The name of the default kernel to start
# c.MultiKernelManager.default_kernel_name = ‘python3‘

# The kernel manager class.  This is configurable to allow subclassing of the
# KernelManager for customized behavior.
# c.MultiKernelManager.kernel_manager_class = ‘jupyter_client.ioloop.IOLoopKernelManager‘

#------------------------------------------------------------------------------
# MappingKernelManager configuration
#------------------------------------------------------------------------------

# A KernelManager that handles notebook mapping and HTTP error handling

#
# c.MappingKernelManager.root_dir = ‘‘

#------------------------------------------------------------------------------
# ContentsManager configuration
#------------------------------------------------------------------------------

# Base class for serving files and directories.
#
# This serves any text or binary file, as well as directories, with special
# handling for JSON notebook documents.
#
# Most APIs take a path argument, which is always an API-style unicode path, and
# always refers to a directory.
#
# - unicode, not url-escaped
# - ‘/‘-separated
# - leading and trailing ‘/‘ will be stripped
# - if unspecified, path defaults to ‘‘,
#   indicating the root path.

#
# c.ContentsManager.checkpoints = None

#
# c.ContentsManager.checkpoints_class = ‘notebook.services.contents.checkpoints.Checkpoints‘

#
# c.ContentsManager.checkpoints_kwargs = {}

# Glob patterns to hide in file and directory listings.
# c.ContentsManager.hide_globs = [‘__pycache__‘, ‘*.pyc‘, ‘*.pyo‘, ‘.DS_Store‘, ‘*.so‘, ‘*.dylib‘, ‘*~‘]

# Python callable or importstring thereof
#
# To be called on a contents model prior to save.
#
# This can be used to process the structure, such as removing notebook outputs
# or other side effects that should not be saved.
#
# It will be called as (all arguments passed by keyword)::
#
#     hook(path=path, model=model, contents_manager=self)
#
# - model: the model to be saved. Includes file contents.
#   Modifying this dict will affect the file that is stored.
# - path: the API path of the save destination
# - contents_manager: this ContentsManager instance
# c.ContentsManager.pre_save_hook = None

# The base name used when creating untitled directories.
# c.ContentsManager.untitled_directory = ‘Untitled Folder‘

# The base name used when creating untitled files.
# c.ContentsManager.untitled_file = ‘untitled‘

# The base name used when creating untitled notebooks.
# c.ContentsManager.untitled_notebook = ‘Untitled‘

#------------------------------------------------------------------------------
# FileManagerMixin configuration
#------------------------------------------------------------------------------

# Mixin for ContentsAPI classes that interact with the filesystem.
#
# Provides facilities for reading, writing, and copying both notebooks and
# generic files.
#
# Shared by FileContentsManager and FileCheckpoints.
#
# Note ---- Classes using this mixin must provide the following attributes:
#
# root_dir : unicode
#     A directory against against which API-style paths are to be resolved.
#
# log : logging.Logger

# By default notebooks are saved on disk on a temporary file and then if
# succefully written, it replaces the old ones. This procedure, namely
# ‘atomic_writing‘, causes some bugs on file system whitout operation order
# enforcement (like some networked fs). If set to False, the new notebook is
# written directly on the old one which could fail (eg: full filesystem or quota
# )
# c.FileManagerMixin.use_atomic_writing = True

#------------------------------------------------------------------------------
# FileContentsManager configuration
#------------------------------------------------------------------------------

# Python callable or importstring thereof
#
# to be called on the path of a file just saved.
#
# This can be used to process the file on disk, such as converting the notebook
# to a script or HTML via nbconvert.
#
# It will be called as (all arguments passed by keyword)::
#
#     hook(os_path=os_path, model=model, contents_manager=instance)
#
# - path: the filesystem path to the file just written - model: the model
# representing the file - contents_manager: this ContentsManager instance
# c.FileContentsManager.post_save_hook = None

#
# c.FileContentsManager.root_dir = ‘‘

# DEPRECATED, use post_save_hook. Will be removed in Notebook 5.0
# c.FileContentsManager.save_script = False

#------------------------------------------------------------------------------
# NotebookNotary configuration
#------------------------------------------------------------------------------

# A class for computing and verifying notebook signatures.

# The hashing algorithm used to sign notebooks.
# c.NotebookNotary.algorithm = ‘sha256‘

# The number of notebook signatures to cache. When the number of signatures
# exceeds this value, the oldest 25% of signatures will be culled.
# c.NotebookNotary.cache_size = 65535

# The sqlite file in which to store notebook signatures. By default, this will
# be in your Jupyter runtime directory. You can set it to ‘:memory:‘ to disable
# sqlite writing to the filesystem.
# c.NotebookNotary.db_file = ‘‘

# The secret key with which notebooks are signed.
# c.NotebookNotary.secret = b‘‘

# The file where the secret key is stored.
# c.NotebookNotary.secret_file = ‘‘

#------------------------------------------------------------------------------
# KernelSpecManager configuration
#------------------------------------------------------------------------------

# If there is no Python kernelspec registered and the IPython kernel is
# available, ensure it is added to the spec list.
# c.KernelSpecManager.ensure_native_kernel = True

# The kernel spec class.  This is configurable to allow subclassing of the
# KernelSpecManager for customized behavior.
# c.KernelSpecManager.kernel_spec_class = ‘jupyter_client.kernelspec.KernelSpec‘

# Whitelist of allowed kernel names.
#
# By default, all installed kernels are allowed.
# c.KernelSpecManager.whitelist = set()

6、在我们的代码中,有时候想执行grid函数时,会出现错误:“Widget Javascript not detected. It may not be installed properly. ”

出现这个原因应该是没有安装ipywidgets。于是就安装:conda install -c conda-forge ipywidgets

安装成功后,执行:jupyter nbextension enable --py  widgetsnbextension 后如下所示:

此时,等待一会,在执行grid函数时就不会报错额。

时间: 2024-09-29 01:57:16

window下安装jupyter的相关文章

在Window下安装Oracle

在Window下安装Oracle数据库详解 一.Oracle解压包下载地址 http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.html 二.解压Oracle解压包文件 1.解压如下两份文件,解压到当前同一个文件夹 2.解压完成后会多出如下database文件夹 3.进入database文件夹,会见到如下文件 会弹出如下窗口,等待安装操作中 三.如下是安装步骤 1.电子邮箱可以不填,去掉选项勾

memcached 缓存window下安装

首先到 http://danga.com/memcached/ (符件中我也上传了这两个包)下载 memcached 的 windows 版本和 java 客户端 jar 包,目前最新版本是 memcached-1.2.1-win32.zip 和 java_memcached-release_1.6.zip , 分别解压后即可! 首先是安装运行 memcached 服务器, 我们将 memcached-1.2.1-win32.zip 解压后,进入其目录,然后运行如下命令: c:>memcache

pylint window下安装与使用

简介 Pylint 是一个 Python 代码分析工具,它分析 Python 代码中的错误,查找不符合代码风格标准(Pylint 默认使用的代码风格是 PEP 8)和有潜在问题的代码. Pylint 是一个 Python 工具,除了平常代码分析工具的作用之外,它提供了更多的功能:如检查一行代码的长度,变量名是否符合命名标准,一个声明过的接口是否被真正实现等等. Pylint 的一个很大的好处是它的高可配置性,高可定制性,并且可以很容易写小插件来添加功能. 如果运行两次 Pylint,它会同时显示

Window下安装Maven及Eclipse中安装m2eclipse插件

作为Apache组织中的一个颇为成功的开源项目,Maven主要服务于基于Java平台的项目构建.依赖管理和项目信息管理. 一.在Window上安装Maven 1. 在安装Maven之前首先是否已正确安装了JDK,Maven可运行在JDK1.4及以上版本. echo %JAVA_HOME% java -version 2. 下载Maven下载地址http://maven.apache.org/download.cgi,选择对应版本apache-maven-3.2.5-bin.zip或者apache

window下安装nvm、node.js、npm的步骤

1.下载nvm(nodejs版本管理工具) https://github.com/coreybutler/nvm-windows/releases 下载nvm-noinstall.zip,解压即可使用 2.双击install.cmd,直接回车,默认在c盘生成settings.txt 3.配置settings.txt root:E:\front_end\nvm //nvm.exe所在目录 path:E:\front_end\nodejs //node快捷方式所在的路径 arch: 64 //当前系

在window下安装python的.whl文件

在linux下的安装过程是非常简单的 在linux下我一般用vim写python,最近经常在window下写代码,不想切换,所以准备把window下python的插件装好 其实一些简单的exe当然很好装,这里遇到了.whl文件 为了安装它,必须有 安装eay_install 安装pip 但是这里pip还是被安装在了scripts目录下 下次要运行pip的时候还是要到这个目录下 之后需要运行.whl文件 pip install whatever.whl 就超级简单了

CAFFE(四):Ubuntu 下安装jupyter notebook

第一步.安装 pycaffe notebook 接口环境 在上一步成功安装 caffe 之后,就可以通过 caffe 去做训练数据集或者预测各种相关的事了,只不过需要在命令行下通过 caffe 命令进行操作,而这一步 pycaffe 的安装以及 notebook 环境配置只是为了更方便的去使用 caffe ,实际上大多数都是通过 python 来操作 caffe 的,而 notebook 使用浏览器作为界面,可以更方便的编写和执行 python 代码. 首先编译 pycaffe : cd caf

window下安装Apache Tomcat

window下Apache Tomcat安装 1.下载Apache Tomcat 打开:http://tomcat.apache.org/,根据需要下载对应版本 我选择下载相应windows版本的Tomcat 9 2.解压,进入到对应目录 了解一下Tomcat下各个文件及文件夹的意义: bin:二进制执行文件.里面最常用的文件是startup.bat,如果是 Linux 或 Mac 系统启动文件为 startup.sh. conf:配置目录.里面最核心的文件是server.xml.可以在里面改端

window 下安装 dig 命令

dig 是一个 Linux 下用来 DNS 查询信息的工具,全称是Domain Information Groper,与 nslookup 类似,但比 nslookup 功能更强大.Windows 下只有 nslookup,如果也想用到 dig 命令,就只能自己动手安装了.dig 作为 bind 的一部分,官方网站如下:http://www.bind9.net/download下面来具体说说步骤,如何安装. 选择一个镜像站点,点击进入,比如:ftp://ftp.nominum.com/pub/i