hdu 4506(数学,循环节+快速幂)

小明系列故事——师兄帮帮忙

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 5427    Accepted Submission(s): 1461

Problem Description

 
 小明自从告别了ACM/ICPC之后,就开始潜心研究数学问题了,一则可以为接下来的考研做准备,再者可以借此机会帮助一些同学,尤其是漂亮的师妹。这
不,班里唯一的女生又拿一道数学题来请教小明,小明当然很高兴的就接受了。不过等他仔细读题以后,发现自己也不会做,这下小明囧了:如果回复说自己不懂,
岂不是很没面子?
  所以,他现在私下求你帮忙解决这道题目,题目是这样的:
  给你n个数字,分别是
a1,a2,a3,a4,a5……an,这些数字每过一个单位时间就会改变,假设上一个单位时间的数字为a1’,a2’,a3’……an’,那么这个单位
时间的数字a[i] = a[i - 1]’ * K(i == 1的时候a[1] = a[n]’ * K),其中K为给定的系数。
  现在的问题就是求第t单位时间的时候这n个数字变成了什么了?由于数字可能会很大,所以只要你输出数字对10^9 + 7取余以后的结果。

Input

  输入数据第一行是一个正整数T,表示有T组测试数据;
  每组数据有两行,第一行包含输入三个整数n, t, k,其中n代表数字个数,t代表第t个单位时间,k代表系数;第二行输入n个数字ai,代表每个数字开始的时候是多少。

  [Technical Specification]
  T <= 100
  1 <= n <= 10 ^ 4
  0 <= t <= 10 ^ 9  其中 t = 0 表示初始状态
  1 <= k <= 10 ^ 9
  1 <= ai<= 10 ^ 9

Output

  对于每组数据请输出第t单位时间后这n个数字变成了什么,输出的时候每两个数字之间输出一个空格,行末不要输出多余的空格,具体见样例。

Sample Input

2
3 2 5
1 2 3
3 0 5
1 2 3

Sample Output

50 75 25
1 2 3

知道了循环节是n,求快速幂,然后输出即可。

#include <stdio.h>
#include <string.h>
using namespace std;
typedef long long LL;
const int N = 10005;
const LL mod = 1000000007;
LL a[N];
LL pow_mod(LL a,LL n){
    LL ans = 1;
    while(n){
        if(n&1) ans = a*ans%mod;
        a = a*a%mod;
        n>>=1;
    }
    return ans;
}
int main(){
    int tcase;
    scanf("%d",&tcase);
    int n,t;
    LL k;
    while(tcase--){
        scanf("%d%d%lld",&n,&t,&k);
        LL M = pow_mod(k,(LL)t);
        for(int i=1;i<=n;i++){
            LL val;
            scanf("%lld",&val);
            a[i] = M*val%mod;
        }
        int m = t%n;
        for(int i=(n-m+1);i<=n;i++){
            printf("%lld ",a[i]);
        }
        for(int i=1;i<n-m+1;i++){
            if(i!=n-m)
            printf("%lld ",a[i]);
            else printf("%lld\n",a[i]);
        }
    }
}
时间: 2024-12-27 02:07:27

hdu 4506(数学,循环节+快速幂)的相关文章

hdu 5690(同余定理找循环节 / 快速幂)

1 #include<bits/stdc++.h> 2 using namespace std; 3 typedef long long ll; 4 #define lld I64d 5 #ifdef _WIN32 6 #define LLD "%I64d" 7 #else 8 #define LLD "%lld" 9 #endif 10 const int N = 10000 + 100; 11 ll x,m,c,k; 12 int pos[N]; 1

2016&quot;百度之星&quot; - 初赛(Astar Round2A)1001 All X(HDU5690)——找循环节|快速幂

一个由m个数字x组成的新数字,问其能否mod k等于c. 先提供第一种思路,找循环节.因为每次多一位数都是进行(t*10+x)mod k(这里是同余模的体现),因为x,k都确定,只要t再一样得到的答案一定一样.所以在一步一步中进行时一旦出现了一个之前出现过的数字,那么很显然后面就要开始进行循环了.找出这个循环节,然后把m放到这个循环节里头就行(这里的说法有问题,见下文的第二点). 但是这里有两个要注意的地方,第一是只有当前出现的数一样才能保证下一个出现的数一样,而并不代表着,当前的数一样,得到它

[ An Ac a Day ^_^ ] hdu 4565 数学推导+矩阵快速幂

从今天开始就有各站网络赛了 今天是ccpc全国赛的网络赛 希望一切顺利 可以去一次吉大 希望还能去一次大连 题意: 很明确是让你求Sn=[a+sqrt(b)^n]%m 思路: 一开始以为是水题 暴力了一发没过 上网看了一下才知道是快速幂 而且特征方程的推导简直精妙 尤其是共轭相抵消的构造 真的是太看能力了 (下图转自某大神博客) 特征方程是C^2=-2*a*C+(a*a-b) 然后用快速幂求解 临时学了下矩阵快速幂 从这道题能看出来 弄ACM真的要数学好 这不是学校认知的高数 线代 概率分数 而

hdu 5171 GTY&#39;s birthday gift(数学,矩阵快速幂)

题意: 开始时集合中有n个数. 现在要进行k次操作. 每次操作:从集合中挑最大的两个数a,b进行相加,得到的数添加进集合中. 以此反复k次. 问最后集合中所有数的和是多少. (2≤n≤100000,1≤k≤1000000000) 思路: 写出来发现是要求Fibonaci的前n个数的和. Fibonaci是用矩阵快速幂求的,这个也可以. [Sn,Fn,Fn-1]=[某个矩阵]*[Sn-1,Fn-1,Fn-2] [S2,F2,F1]=[2,1,1] 然后写,,, 这个代码有些繁琐,应该把矩阵操作单独

HDU 2604 Queuing (矩阵快速幂)

HDU 2604 Queuing (矩阵快速幂) ACM 题目地址:HDU 2604 Queuing 题意: n个人排队,f表示女,m表示男,包含子串'fmf'和'fff'的序列为O队列,否则为E队列,有多少个序列为E队列. 分析: 矩阵快速幂入门题. 下面引用巨巨解释: 用f(n)表示n个人满足条件的结果,那么如果最后一个人是m的话,那么前n-1个满足条件即可,就是f(n-1): 如果最后一个是f那么这个还无法推出结果,那么往前再考虑一位:那么后三位可能是:mmf, fmf, mff, fff

HDU 4686 Arc of Dream(快速幂矩阵)

题目链接 再水一发,构造啊,初始化啊...wa很多次啊.. #include <cstring> #include <cstdio> #include <string> #include <iostream> #include <algorithm> #include <vector> #include <queue> using namespace std; #define MOD 1000000007 #define

HDU 2254 奥运(矩阵快速幂+二分等比序列求和)

HDU 2254 奥运(矩阵快速幂+二分等比序列求和) ACM 题目地址:HDU 2254 奥运 题意: 中问题不解释. 分析: 根据floyd的算法,矩阵的k次方表示这个矩阵走了k步. 所以k天后就算矩阵的k次方. 这样就变成:初始矩阵的^[t1,t2]这个区间内的v[v1][v2]的和. 所以就是二分等比序列求和上场的时候了. 跟HDU 1588 Gauss Fibonacci的算法一样. 代码: /* * Author: illuz <iilluzen[at]gmail.com> * B

HDU 2604 Queuing,矩阵快速幂

题目地址:HDU 2604 Queuing 题意: 略 分析: 易推出:   f(n)=f(n-1)+f(n-3)+f(n-4) 构造一个矩阵: 然后直接上板子: /* f[i] = f[i-1] + f[i-3] + f[i-4] */ #include<cstdio> #include<cstring> using namespace std; const int N = 4; int L, M; struct mtx { int x[N+1][N+1]; mtx(){ mem

hdu 2243 AC自动机 + 矩阵快速幂

// hdu 2243 AC自动机 + 矩阵快速幂 // // 题目大意: // // 给你一些短串,问在长度不超过k的任意串,包含至少一个这些短串的其中 // 一个.问这样的串有多少个. // // 解题思路: // // 首先, 包含和不包含是一种互斥关系,包含+不包含 = 全集u.全集的答案就是 // 26 ^ 1 + 26 ^ 2 + .... + 26 ^ k.不包含的比较好求.构建一个自动机,得到 // 一个转移矩阵A.表示状态i能到状态j的方法数.而这些状态中都是不包含所给的 //