Java集合源码剖析——ArrayList源码剖析

ArrayList简介

ArrayList是基于数组实现的,是一个动态数组,其容量能自动增长,类似于C语言中的动态申请内存,动态增长内存。

ArrayList不是线程安全的,只能用在单线程环境下,多线程环境下可以考虑用Collections.synchronizedList(List l)函数返回一个线程安全的ArrayList类,也可以使用concurrent并发包下的CopyOnWriteArrayList类。

ArrayList实现了Serializable接口,因此它支持序列化,能够通过序列化传输,实现了RandomAccess接口,支持快速随机访问,实际上就是通过下标序号进行快速访问,实现了Cloneable接口,能被克隆。

ArrayList源码剖析

ArrayList的源码如下(加入了比较详细的注释):

  1 package java.util;
  2
  3 public class ArrayList<E> extends AbstractList<E>
  4         implements List<E>, RandomAccess, Cloneable, java.io.Serializable
  5 {
  6     // 序列版本号
  7     private static final long serialVersionUID = 8683452581122892189L;
  8
  9     // ArrayList基于该数组实现,用该数组保存数据
 10     private transient Object[] elementData;
 11
 12     // ArrayList中实际数据的数量
 13     private int size;
 14
 15     // ArrayList带容量大小的构造函数。
 16     public ArrayList(int initialCapacity) {
 17         super();
 18         if (initialCapacity < 0)
 19             throw new IllegalArgumentException("Illegal Capacity: "+
 20                                                initialCapacity);
 21         // 新建一个数组
 22         this.elementData = new Object[initialCapacity];
 23     }
 24
 25     // ArrayList无参构造函数。默认容量是10。
 26     public ArrayList() {
 27         this(10);
 28     }
 29
 30     // 创建一个包含collection的ArrayList
 31     public ArrayList(Collection<? extends E> c) {
 32         elementData = c.toArray();
 33         size = elementData.length;
 34         if (elementData.getClass() != Object[].class)
 35             elementData = Arrays.copyOf(elementData, size, Object[].class);
 36     }
 37
 38
 39     // 将当前容量值设为实际元素个数
 40     public void trimToSize() {
 41         modCount++;
 42         int oldCapacity = elementData.length;
 43         if (size < oldCapacity) {
 44             elementData = Arrays.copyOf(elementData, size);
 45         }
 46     }
 47
 48
 49     // 确定ArrarList的容量。
 50     // 若ArrayList的容量不足以容纳当前的全部元素,设置 新的容量=“(原始容量x3)/2 + 1”
 51     public void ensureCapacity(int minCapacity) {
 52         // 将“修改统计数”+1,该变量主要是用来实现fail-fast机制的
 53         modCount++;
 54         int oldCapacity = elementData.length;
 55         // 若当前容量不足以容纳当前的元素个数,设置 新的容量=“(原始容量x3)/2 + 1”
 56         if (minCapacity > oldCapacity) {
 57             Object oldData[] = elementData;
 58             int newCapacity = (oldCapacity * 3)/2 + 1;
 59             //如果还不够,则直接将minCapacity设置为当前容量
 60             if (newCapacity < minCapacity)
 61                 newCapacity = minCapacity;
 62             elementData = Arrays.copyOf(elementData, newCapacity);
 63         }
 64     }
 65
 66     // 添加元素e
 67     public boolean add(E e) {
 68         // 确定ArrayList的容量大小
 69         ensureCapacity(size + 1);  // Increments modCount!!
 70         // 添加e到ArrayList中
 71         elementData[size++] = e;
 72         return true;
 73     }
 74
 75     // 返回ArrayList的实际大小
 76     public int size() {
 77         return size;
 78     }
 79
 80     // ArrayList是否包含Object(o)
 81     public boolean contains(Object o) {
 82         return indexOf(o) >= 0;
 83     }
 84
 85     //返回ArrayList是否为空
 86     public boolean isEmpty() {
 87         return size == 0;
 88     }
 89
 90     // 正向查找,返回元素的索引值
 91     public int indexOf(Object o) {
 92         if (o == null) {
 93             for (int i = 0; i < size; i++)
 94             if (elementData[i]==null)
 95                 return i;
 96             } else {
 97                 for (int i = 0; i < size; i++)
 98                 if (o.equals(elementData[i]))
 99                     return i;
100             }
101             return -1;
102         }
103
104         // 反向查找,返回元素的索引值
105         public int lastIndexOf(Object o) {
106         if (o == null) {
107             for (int i = size-1; i >= 0; i--)
108             if (elementData[i]==null)
109                 return i;
110         } else {
111             for (int i = size-1; i >= 0; i--)
112             if (o.equals(elementData[i]))
113                 return i;
114         }
115         return -1;
116     }
117
118     // 反向查找(从数组末尾向开始查找),返回元素(o)的索引值
119     public int lastIndexOf(Object o) {
120         if (o == null) {
121             for (int i = size-1; i >= 0; i--)
122             if (elementData[i]==null)
123                 return i;
124         } else {
125             for (int i = size-1; i >= 0; i--)
126             if (o.equals(elementData[i]))
127                 return i;
128         }
129         return -1;
130     }
131
132
133     // 返回ArrayList的Object数组
134     public Object[] toArray() {
135         return Arrays.copyOf(elementData, size);
136     }
137
138     // 返回ArrayList元素组成的数组
139     public <T> T[] toArray(T[] a) {
140         // 若数组a的大小 < ArrayList的元素个数;
141         // 则新建一个T[]数组,数组大小是“ArrayList的元素个数”,并将“ArrayList”全部拷贝到新数组中
142         if (a.length < size)
143             return (T[]) Arrays.copyOf(elementData, size, a.getClass());
144
145         // 若数组a的大小 >= ArrayList的元素个数;
146         // 则将ArrayList的全部元素都拷贝到数组a中。
147         System.arraycopy(elementData, 0, a, 0, size);
148         if (a.length > size)
149             a[size] = null;
150         return a;
151     }
152
153     // 获取index位置的元素值
154     public E get(int index) {
155         RangeCheck(index);
156
157         return (E) elementData[index];
158     }
159
160     // 设置index位置的值为element
161     public E set(int index, E element) {
162         RangeCheck(index);
163
164         E oldValue = (E) elementData[index];
165         elementData[index] = element;
166         return oldValue;
167     }
168
169     // 将e添加到ArrayList中
170     public boolean add(E e) {
171         ensureCapacity(size + 1);  // Increments modCount!!
172         elementData[size++] = e;
173         return true;
174     }
175
176     // 将e添加到ArrayList的指定位置
177     public void add(int index, E element) {
178         if (index > size || index < 0)
179             throw new IndexOutOfBoundsException(
180             "Index: "+index+", Size: "+size);
181
182         ensureCapacity(size+1);  // Increments modCount!!
183         System.arraycopy(elementData, index, elementData, index + 1,
184              size - index);
185         elementData[index] = element;
186         size++;
187     }
188
189     // 删除ArrayList指定位置的元素
190     public E remove(int index) {
191         RangeCheck(index);
192
193         modCount++;
194         E oldValue = (E) elementData[index];
195
196         int numMoved = size - index - 1;
197         if (numMoved > 0)
198             System.arraycopy(elementData, index+1, elementData, index,
199                  numMoved);
200         elementData[--size] = null; // Let gc do its work
201
202         return oldValue;
203     }
204
205     // 删除ArrayList的指定元素
206     public boolean remove(Object o) {
207         if (o == null) {
208                 for (int index = 0; index < size; index++)
209             if (elementData[index] == null) {
210                 fastRemove(index);
211                 return true;
212             }
213         } else {
214             for (int index = 0; index < size; index++)
215             if (o.equals(elementData[index])) {
216                 fastRemove(index);
217                 return true;
218             }
219         }
220         return false;
221     }
222
223
224     // 快速删除第index个元素
225     private void fastRemove(int index) {
226         modCount++;
227         int numMoved = size - index - 1;
228         // 从"index+1"开始,用后面的元素替换前面的元素。
229         if (numMoved > 0)
230             System.arraycopy(elementData, index+1, elementData, index,
231                              numMoved);
232         // 将最后一个元素设为null
233         elementData[--size] = null; // Let gc do its work
234     }
235
236     // 删除元素
237     public boolean remove(Object o) {
238         if (o == null) {
239             for (int index = 0; index < size; index++)
240             if (elementData[index] == null) {
241                 fastRemove(index);
242             return true;
243             }
244         } else {
245             // 便利ArrayList,找到“元素o”,则删除,并返回true。
246             for (int index = 0; index < size; index++)
247             if (o.equals(elementData[index])) {
248                 fastRemove(index);
249             return true;
250             }
251         }
252         return false;
253     }
254
255     // 清空ArrayList,将全部的元素设为null
256     public void clear() {
257         modCount++;
258
259         for (int i = 0; i < size; i++)
260             elementData[i] = null;
261
262         size = 0;
263     }
264
265     // 将集合c追加到ArrayList中
266     public boolean addAll(Collection<? extends E> c) {
267         Object[] a = c.toArray();
268         int numNew = a.length;
269         ensureCapacity(size + numNew);  // Increments modCount
270         System.arraycopy(a, 0, elementData, size, numNew);
271         size += numNew;
272         return numNew != 0;
273     }
274
275     // 从index位置开始,将集合c添加到ArrayList
276     public boolean addAll(int index, Collection<? extends E> c) {
277         if (index > size || index < 0)
278             throw new IndexOutOfBoundsException(
279             "Index: " + index + ", Size: " + size);
280
281         Object[] a = c.toArray();
282         int numNew = a.length;
283         ensureCapacity(size + numNew);  // Increments modCount
284
285         int numMoved = size - index;
286         if (numMoved > 0)
287             System.arraycopy(elementData, index, elementData, index + numNew,
288                  numMoved);
289
290         System.arraycopy(a, 0, elementData, index, numNew);
291         size += numNew;
292         return numNew != 0;
293     }
294
295     // 删除fromIndex到toIndex之间的全部元素。
296     protected void removeRange(int fromIndex, int toIndex) {
297     modCount++;
298     int numMoved = size - toIndex;
299         System.arraycopy(elementData, toIndex, elementData, fromIndex,
300                          numMoved);
301
302     // Let gc do its work
303     int newSize = size - (toIndex-fromIndex);
304     while (size != newSize)
305         elementData[--size] = null;
306     }
307
308     private void RangeCheck(int index) {
309     if (index >= size)
310         throw new IndexOutOfBoundsException(
311         "Index: "+index+", Size: "+size);
312     }
313
314
315     // 克隆函数
316     public Object clone() {
317         try {
318             ArrayList<E> v = (ArrayList<E>) super.clone();
319             // 将当前ArrayList的全部元素拷贝到v中
320             v.elementData = Arrays.copyOf(elementData, size);
321             v.modCount = 0;
322             return v;
323         } catch (CloneNotSupportedException e) {
324             // this shouldn‘t happen, since we are Cloneable
325             throw new InternalError();
326         }
327     }
328
329
330     // java.io.Serializable的写入函数
331     // 将ArrayList的“容量,所有的元素值”都写入到输出流中
332     private void writeObject(java.io.ObjectOutputStream s)
333         throws java.io.IOException{
334     // Write out element count, and any hidden stuff
335     int expectedModCount = modCount;
336     s.defaultWriteObject();
337
338         // 写入“数组的容量”
339         s.writeInt(elementData.length);
340
341     // 写入“数组的每一个元素”
342     for (int i=0; i<size; i++)
343             s.writeObject(elementData[i]);
344
345     if (modCount != expectedModCount) {
346             throw new ConcurrentModificationException();
347         }
348
349     }
350
351
352     // java.io.Serializable的读取函数:根据写入方式读出
353     // 先将ArrayList的“容量”读出,然后将“所有的元素值”读出
354     private void readObject(java.io.ObjectInputStream s)
355         throws java.io.IOException, ClassNotFoundException {
356         // Read in size, and any hidden stuff
357         s.defaultReadObject();
358
359         // 从输入流中读取ArrayList的“容量”
360         int arrayLength = s.readInt();
361         Object[] a = elementData = new Object[arrayLength];
362
363         // 从输入流中将“所有的元素值”读出
364         for (int i=0; i<size; i++)
365             a[i] = s.readObject();
366     }
367 }  

总结

关于ArrayList的源码,给出几点比较重要的总结:

1、注意其三个不同的构造方法。无参构造方法构造的ArrayList的容量默认为10,带有Collection参数的构造方法,将Collection转化为数组赋给ArrayList的实现数组elementData。

2、注意扩充容量的方法ensureCapacity。ArrayList在每次增加元素(可能是1个,也可能是一组)时,都要调用该方法来确保足够的容量。当容量不足以容纳当前的元素个数时,就设置新的容量为旧的容量的1.5倍加1,如果设置后的新容量还不够,则直接新容量设置为传入的参数(也就是所需的容量),而后用Arrays.copyof()方法将元素拷贝到新的数组(详见下面的第3点)。从中可以看出,当容量不够时,每次增加元素,都要将原来的元素拷贝到一个新的数组中,非常之耗时,也因此建议在事先能确定元素数量的情况下,才使用ArrayList,否则建议使用LinkedList。

3、ArrayList的实现中大量地调用了Arrays.copyof()和System.arraycopy()方法。我们有必要对这两个方法的实现做下深入的了解。

首先来看Arrays.copyof()方法。它有很多个重载的方法,但实现思路都是一样的,我们来看泛型版本的源码:

1 public static <T> T[] copyOf(T[] original, int newLength) {
2     return (T[]) copyOf(original, newLength, original.getClass());
3 }  

很明显调用了另一个copyof方法,该方法有三个参数,最后一个参数指明要转换的数据的类型,其源码如下:

1 public static <T,U> T[] copyOf(U[] original, int newLength, Class<? extends T[]> newType) {
2     T[] copy = ((Object)newType == (Object)Object[].class)
3         ? (T[]) new Object[newLength]
4         : (T[]) Array.newInstance(newType.getComponentType(), newLength);
5     System.arraycopy(original, 0, copy, 0,
6                      Math.min(original.length, newLength));
7     return copy;
8 }  

这里可以很明显地看出,该方法实际上是在其内部又创建了一个长度为newlength的数组,调用System.arraycopy()方法,将原来数组中的元素复制到了新的数组中。

下面来看System.arraycopy()方法。该方法被标记了native,调用了系统的C/C++代码,在JDK中是看不到的,但在openJDK中可以看到其源码。该函数实际上最终调用了C语言的memmove()函数,因此它可以保证同一个数组内元素的正确复制和移动,比一般的复制方法的实现效率要高很多,很适合用来批量处理数组。Java强烈推荐在复制大量数组元素时用该方法,以取得更高的效率。

4、注意ArrayList的两个转化为静态数组的toArray方法。

第一个,Object[] toArray()方法。该方法有可能会抛出java.lang.ClassCastException异常,如果直接用向下转型的方法,将整个ArrayList集合转变为指定类型的Array数组,便会抛出该异常,而如果转化为Array数组时不向下转型,而是将每个元素向下转型,则不会抛出该异常,显然对数组中的元素一个个进行向下转型,效率不高,且不太方便。

第二个,<T> T[] toArray(T[] a)方法。该方法可以直接将ArrayList转换得到的Array进行整体向下转型(转型其实是在该方法的源码中实现的),且从该方法的源码中可以看出,参数a的大小不足时,内部会调用Arrays.copyOf方法,该方法内部创建一个新的数组返回,因此对该方法的常用形式如下:

1 public static Integer[] vectorToArray2(ArrayList<Integer> v) {
2     Integer[] newText = (Integer[])v.toArray(new Integer[0]);
3     return newText;
4 } 

5、ArrayList基于数组实现,可以通过下标索引直接查找到指定位置的元素,因此查找效率高,但每次插入或删除元素,就要大量地移动元素,插入删除元素的效率低。

6、在查找给定元素索引值等的方法中,源码都将该元素的值分为null和不为null两种情况处理,ArrayList中允许元素为null。

参考链接:https://blog.csdn.net/ns_code/article/details/35568011

原文地址:https://www.cnblogs.com/itbuyixiaogong/p/9082299.html

时间: 2024-10-23 09:44:19

Java集合源码剖析——ArrayList源码剖析的相关文章

Java集合框架之一:ArrayList源码分析

版权声明:本文为博主原创文章,转载请注明出处,欢迎交流学习! ArrayList底层维护的是一个动态数组,每个ArrayList实例都有一个容量.该容量是指用来存储列表元素的数组的大小.它总是至少等于列表的大小.随着向 ArrayList 中不断添加元素,其容量也自动增长. ArrayList不是同步的(也就是说不是线程安全的),如果多个线程同时访问一个ArrayList实例,而其中至少一个线程从结构上修改了列表,那么它必须保持外部同步,在多线程环境下,可以使用Collections.synch

深入理解JAVA集合系列四:ArrayList源码解读

在开始本章内容之前,这里先简单介绍下List的相关内容. List的简单介绍 有序的collection,用户可以对列表中每个元素的插入位置进行精确的控制.用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素.列表通常允许重复的元素,且允许null元素的存放. ArrayList的简单介绍 JDK中这样定义ArrayList:List接口的大小可变数据的实现. 主要有以下特点: 1.有序 2.线程不安全 3.元素可以重复 4.可以存放null值 顾名思义,取名ArrayLis

【源码】ArrayList源码剖析

//-------------------------------------------------------------------- 转载请注明出处:http://blog.csdn.net/chdjj by Rowandjj 2014/8/7 //-------------------------------------------------------------------- 从这篇文章开始,我将对java集合框架中的一些比较重要且常用的类进行分析.这篇文章主要介绍的是Array

【转】Java 集合系列03之 ArrayList详细介绍(源码解析)和使用示例

概要 上一章,我们学习了Collection的架构.这一章开始,我们对Collection的具体实现类进行讲解:首先,讲解List,而List中ArrayList又最为常用.因此,本章我们讲解ArrayList.先对ArrayList有个整体认识,再学习它的源码,最后再通过例子来学习如何使用它.内容包括:第1部分 ArrayList简介第2部分 ArrayList数据结构第3部分 ArrayList源码解析(基于JDK1.6.0_45)第4部分 ArrayList遍历方式第5部分 toArray

(转)Java 集合系列03之 ArrayList详细介绍(源码解析)和使用示例

概要 上一章,我们学习了Collection的架构.这一章开始,我们对Collection的具体实现类进行讲解:首先,讲解List,而List中ArrayList又最为常用.因此,本章我们讲解ArrayList.先对ArrayList有个整体认识,再学习它的源码,最后再通过例子来学习如何使用它.内容包括:第1部分 ArrayList简介第2部分 ArrayList数据结构第3部分 ArrayList源码解析(基于JDK1.6.0_45)第4部分 ArrayList遍历方式第5部分 toArray

Java 集合系列03之 ArrayList详细介绍(源码解析)和使用示例

概要 上一章,我们学习了Collection的架构.这一章开始,我们对Collection的具体实现类进行讲解:首先,讲解List,而List中ArrayList又最为常用.因此,本章我们讲解ArrayList.先对ArrayList有个整体认识,再学习它的源码,最后再通过例子来学习如何使用它.内容包括:第1部分 ArrayList简介第2部分 ArrayList数据结构第3部分 ArrayList源码解析(基于JDK1.6.0_45)第4部分 ArrayList遍历方式第5部分 toArray

1.Java集合-HashMap实现原理及源码分析

哈希表(Hash  Table)也叫散列表,是一种非常重要的数据结构,应用场景及其丰富,许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表,而HashMap的实现原理也常常出现在各类的面试题中,这里对java集合框架中的对应实现HashMap的实现原理进行讲解,然后对JDK7的HashMap的源码进行分析 哈希算法,是一类算法: 哈希表(Hash  Table)是一种数据结构: 哈希函数:是支撑哈希表的一类函数: HashMap 是 Java中用哈希数据结构实现的Ma

[Java源码分析]ArrayList源码分析

ArrayList是java集合中最常用的,基于一个数组实现的,容量可以动态增长. ArrayList不是现成安全的,只能在单线程环境下使用. 本文以jdk1.8的源码为例,分析其实现机制. 1.基本属性与构造函数 public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable { private sta

java集合的实现细节--ArrayList和LinkedList

 ArrayList和LinkedList的实现差异 List代表一种线性表的数据结构,ArrayList则是一种顺序存储的线性表,ArrayList底层采用动态数组的形式保存每一个集合元素,LinkedList则是一种链式存储的线性表,其本质上就是一个双向链表,它不仅实现了List接口,还实现了Deque接口,Deque代表了一种双端队列,既具有队列(FIFO)的特性,也具有栈(FILO)的特性,也就是说,LinkedList既可以当成双向链表使用,也可以当成队列使用,还可以当成栈来使用. p