常用的大数据技术有哪些?

大数据技术为决策提供依据,在政府、企业、科研项目等决策中扮演着重要的角色,在社会治理和企业管理中起到了不容忽视的作用,很多国家,如中国、美国以及欧盟等都已将大数据列入国家发展战略,微软、谷歌、百度以及亚马逊等大型企业也将大数据技术列为未来发展的关键筹码,可见,大数据技术在当今乃至未来的重要性!

大数据学习QQ群:716581014

大数据技术,简而言之,就是提取大数据价值的技术,是根据特定目标,经过数据收集与存储、数据筛选、算法分析与预测、数据分析结果展示等,为做出正确决策提供依据,其数据级别通常在PB以上,以下是常用的大数据技术:

一、大数据基础阶段

大数据基础阶段需掌握的技术有:Linux、Docker、KVM、MySQL基础、Oracle基础、MongoDB、redis以及hadoopmapreduce hdfs yarn等。

二、大数据存储阶段

大数据存储阶段需掌握的技术有:hbase、hive、sqoop等。

三、大数据架构设计阶段

大数据架构设计阶段需掌握的技术有:Flume分布式、Zookeeper、Kafka等。

四、大数据实时计算阶段

大数据实时计算阶段需掌握的技术有:Mahout、Spark、storm。

五、大数据数据采集阶段

大数据数据采集阶段需掌握的技术有:Python、Scala。

六、大数据商业实战阶段

大数据商业实战阶段需掌握的技术有:实操企业大数据处理业务场景,分析需求、解决方案实施,综合技术实战应用。

在拥有Java编程语言基础的前提下,可以学习以上大数据技术,大数据是未来的发展方向,正在挑战我们的分析能力及对世界的认知方式,因此,我们与时俱进,迎接变化,并不断的成长!

原文地址:http://blog.51cto.com/13786906/2128781

时间: 2024-10-10 17:37:58

常用的大数据技术有哪些?的相关文章

基于大数据技术的手机用户画像与征信研究

内容提要:手机用户画像是电信运营商实现“数据驱动业务与运营”的重要举措.首先,介绍了手机用户画像过程中对个人隐私保护的方法,然后分析手机用户画像的数据来源与大数据实现技术,最后,通过数据样本实例分析手机用户画像在个人征信中的应用. 引言 随着计算机网络技术的不断发展,“数据即资源”的大数据时代已经来临.用户画像是电信运营商为了避免管道化风险,实现“数据驱动业务与运营”的重要举措.用户画像与应用大数据技术对客户分类密切相关,是单个客户的众多属性标签的累积:另一方面,在运营商涉足的消费金融领域,对手

《Spark大数据分析:核心概念、技术及实践》大数据技术一览

本节书摘来自华章出版社<Spark大数据分析:核心概念.技术及实践>一书中的第1章,第1节,作者穆罕默德·古勒(Mohammed Guller)更多章节内容可以访问云栖社区"华章计算机"公众号查看. 大数据技术一览 我们正处在大数据时代.数据不仅是任何组织的命脉,而且在指数级增长.今天所产生的数据比过去几年所产生的数据大好几个数量级.挑战在于如何从数据中获取商业价值.这就是大数据相关技术想要解决的问题.因此,大数据已成为过去几年最热门的技术趋势之一.一些非常活跃的开源项目都

大数据技术学习路线,该怎么学?

如果你看完有信心能坚持学习的话,那就当下开始行动吧! 一.大数据技术基础 1.linux操作基础 linux系统简介与安装linux常用命令–文件操作linux常用命令–用户管理与权限linux常用命令–系统管理linux常用命令–免密登陆配置与网络管理linux上常用软件安装linux本地yum源配置及yum软件安装linux防火墙配置linux高级文本处理命令cut.sed.awklinux定时任务crontab2.shell编程 shell编程–基本语法shell编程–流程控制shell编

大数据技术学习路线,有信心能学好的朋友,就开始吧

如果你看完有信心能坚持学习的话,那就当下开始行动吧! 一.大数据技术基础 1.linux操作基础 linux系统简介与安装 linux常用命令–文件操作 linux常用命令–用户管理与权限 linux常用命令–系统管理 linux常用命令–免密登陆配置与网络管理 linux上常用软件安装 linux本地yum源配置及yum软件安装 linux防火墙配置 linux高级文本处理命令cut.sed.awk linux定时任务crontab 2.shell编程 shell编程–基本语法 shell编程

学习大数据技术,需要具备哪些【数学知识】?你了解了吗?

谈起大数据技术,很多人都觉得是高大上的一门技术,学起来应该是困难重重!其实对于大数据技术而言,难的不是大数据技术本身,而是需要太多的基础知识,比如说:数学知识.英语能力.编程基础等等. 数学,我们从小就开始学习,一直在跟各种数据打交道,各种公式等等,是大数据学习的必备技术之一. 英语,对于大数据技术文章,比较先进的还是外文比较多,需要一定的英语基础,当然了翻译软件是个好东西,但必要的英语能力也是必须的. 编程,这个就不用我多说了吧,计算机语言,你学不会,该如何向电脑发布指令! 好了,回归我们今天

分类推荐&amp;通俗易懂 :数据科学与大数据技术专业领域的实用工具

数据科学与大数据技术是一门偏向应用的学科领域,因此工具就成为重要的组成部分.在工作中,数据科学家如果选择有效的工具会带来事半功倍的效果.一般来说,数据科学家应该具有操作数据库.数据处理和数据可视化等相关技能,还有很多人还认为计算机技能也是不可或缺的,可以提高数据科学家工作的效率. 在这里相信有许多想要学习大数据的同学,大家可以+下大数据学习裙:957205962,即可免费领取套系统的大数据学习教程 开源社区多年来对数据科学工具包开发有着巨大贡献,这也让数据科学领域得以不断进步.这里我们收集了一些

从大数据技术变迁猜一猜AI人工智能的发展

目前大数据已经成为了各家互联网公司的核心资产和竞争力了,其实不仅是互联网公司,包括传统企业也拥有大量的数据,也想把这些数据发挥出作用.在这种环境下,大数据技术的重要性和火爆程度相信没有人去怀疑. 而AI人工智能又是基于大数据技术基础上发展起来的,大数据技术已经很清晰了,但是AI目前还未成熟啊,所以本文就天马行空一下,从大数据的技术变迁历史中来找出一些端倪,猜一猜AI人工智能未来的发展. 最近断断续续的在看<极客时间>中「 从0开始学大数据 」专栏的文章,受益匪浅,学到了很多.尤其是非常喜欢作者

大数据技术之Hadoop入门

? 第1章 大数据概论 1.1 大数据概念 大数据概念如图2-1 所示. 图2-1 大数据概念 1.2 大数据特点(4V) 大数据特点如图2-2,2-3,2-4,2-5所示 图2-2 大数据特点之大量 图2-3 大数据特点之高速 图2-4 大数据特点之多样 图2-5 大数据特点之低价值密度 1.3 大数据应用场景 大数据应用场景如图2-6,2-7,2-8,2-9,2-10,2-11所示 图2-6 大数据应用场景之物流仓储 图2-7 大数据应用场景之零售 图2-8 大数据应用场景之旅游 图2-9

《Hadoop大数据技术开发实战》新书上线

当今互联网已进入大数据时代,大数据技术已广泛应用于金融.医疗.教育.电信.政府等领域.各行各业每天都在产生大量的数据,数据计量单位已从B.KB.MB.GB.TB发展到PB.EB.ZB.YB甚至BB.NB.DB.预计未来几年,全球数据将呈爆炸式增长.谷歌.阿里巴巴.百度.京东等互联网公司都急需掌握大数据技术的人才,而大数据相关人才却出现了供不应求的状况. Hadoop作为大数据生态系统中的核心框架,专为离线和大规模数据处理而设计.Hadoop的核心组成HDFS为海量数据提供了分布式存储:MapRe