Android Flutter实践内存初探

摘要: Android Flutter实践内存初探 闲鱼技术-匠修我们想使用Flutter来统一移动App开发并做了一些实践。移动设备上的资源有限,通常内存使用都是一个我们日常开发中十分关注的问题。那么,Flutter是如何使用内存,又会对Native App的内存带来哪些影响呢?本文将简单介绍Flutter内存机制,结合测试和我们的开发实践,对日常关心的Bitmap内存使用,View绘制内存使用方面做一些探索。

闲鱼技术-匠修
我们想使用Flutter来统一移动App开发并做了一些实践。移动设备上的资源有限,通常内存使用都是一个我们日常开发中十分关注的问题。那么,Flutter是如何使用内存,又会对Native App的内存带来哪些影响呢?本文将简单介绍Flutter内存机制,结合测试和我们的开发实践,对日常关心的Bitmap内存使用,View绘制内存使用方面做一些探索。

Dart RunTime简介

Flutter Framework使用Dart语言开发,所以App进程中需要一个Dart运行环境(VM),和Android Art一样,Flutter也对Dart源码做了AOT编译,直接将Dart源码编译成了本地字节码,没有了解释执行的过程,提升执行性能。这里重点关注Dart VM内存分配(Allocate)和回收(GC)相关的部分。

和Java显著不同的是Dart的"线程"(Isolate)是不共享内存的,各自的堆(Heap)和栈(Stack)都是隔离的,彼此之间通过消息通道来通信。Dart天然不存在数据竞争和变量状态同步的问题,整个Flutter Framework Widget的渲染过程都运行在一个isolate中。

Dart VM将内存管理分为新生代(New Generation)和老年代(Old Generation)。

新生代(New Generation): 通常初次分配的对象都位于新生代中,该区域主要是存放内存较小并且生命周期较短的对象,比如局部变量。新生代会频繁执行内存回收(GC),回收采用“复制-清除”算法,将内存分为两块(图中的from 和 to),运行时每次只使用其中的一块(图中的from),另一块备用(图中的to)。当发生GC时,将当前使用的内存块中存活的对象拷贝到备用内存块中,然后清除当前使用内存块,最后,交换两块内存的角色。

老年代(Old Generation): 在新生代的GC中“幸存”下来的对象,它们会被转移到老年代中。老年代存放生命力周期较长,内存较大的对象。老年代通常比新生代要大很多。老年代的GC回收采用“标记-清除”算法,分成标记和清除两个阶段。在标记阶段,所有线程参与并发的完成对回收对象的标记,降低标记阶段耗时。在清理阶段,由GC线程负责清理回收对象,和应用线程同时执行,不影响应用运行。

可以看到,Dart VM借鉴了很多JVM的思路,Dart中产生内存泄露的方式也和Java类似,Java中很多排查内存泄露的思路和防止内存泄露的编程方法应该也可以借鉴过来。

Image内存初探
对图片的合理使用和优化是UI编程的重要部分,Flutter提供了Image Widget,我们可以方便的使用:

//使用本地图片new Image.asset("images/xxxx.jpg");//使用网络图片new Image.network("https://xxxxxx");

我们知道Android将内存分为Java虚拟机内存和Native内存,各大厂商都对Java虚拟机内存有一个上限限制,到达上限就会触发OOM异常,而对Native内存的使用没有太严格的限制,现在的手机内存都很大,一般有较大的Native内存富余。那么Android中ImageView使用的是Java虚拟机内存还是Native内存呢?

我们可以来做一个测试:在一个界面上,每点击一次,就在上面堆加一张图片。为了防止后面的图片完全覆盖前面的图片而出现优化的情况,每次都缩小几个像素,这样就不会出现完全覆盖。

打开Android Profiler,一张一张添加图片,观察内存数据。分别测试了Android的6.0,7.0和8.0系统,结果如下:

Android 6.0(Google Nextus5)

Android 7.0(Meizu pro5)

Android 8.0(Google pixel)

在测试中,随着图片一张张增加,Android 6.0 和 7.0都是Java部分的内存在增长,而Android 8.0则是Native部分的内存在增长。由此有结论,Android原生的ImageView在6.0和7.0版本中使用的Java虚拟机内存,而在Android 8.0中则使用的Native内存。

而Flutter Image Widget使用的是哪部分内存呢?我们用Flutter界面来做相同的测试。Flutter Engine的Debug版本和Release版本存在很大的性能差异,所以我们测试最好使用Release版本,但是,Release版本的Apk又不能使用Android profiler来观察内存,所以我们需要在Debug版本的Apk中打包一个Release版本的Flutter Engine, 可以修改flutter tool中的flutter.gradle来实现:

//不做判断,强制改为打包release版本的engineprivate static String buildModeFor(buildType) {
    // if (buildType.name == "profile") {
    //     return "profile"
    // } else if (buildType.debuggable) {
    //     return "debug"
    // }    return "release"}

相同地,我们向Flutter界面中添加图片并用Android Profiler来观察内存,测试使用的dart代码:

class StackImageState extends State<StackImages> {  var images = <String>[];  var index = 0;  @override
  Widget build(BuildContext context) {    var widgets = <Widget>[];    for (int i = 0; i <= index; i++) {      var pos = i - (i ~/ 103) * 103;
      widgets.add(new Container(
          child: new Image.asset("images/${pos}.jpg", fit: BoxFit.cover),
          padding: new EdgeInsets.only(top: i * 2.0)));
    }

    widgets.add(new Center(
        child: new GestureDetector(
            child: new Container(
                child: new Text("添加图片(${index})",
                    style: new TextStyle(color: Colors.red)),
                color: Colors.green,
                padding: const EdgeInsets.all(8.0)),
            onTap: () {
              setState(() {
                index++;
              });
            })));    return new Stack(
        children: widgets, alignment: AlignmentDirectional.topCenter);
  }
}

得到的结果是:

Android 6.0

Android 8.0

可以看到,Flutter Image使用的内存既不属于Java虚拟机内存也不属于Native内存,而是Graphics内存(在Meizu pro5设备上也不属于Graphics,事实上Meizu pro5设备不能归类Flutter Image所使用的内存),官方对Graphics内存的解释是:

那么至少Flutter Image所使用的内存不会是Java虚拟机内存,这对不少Android设备都是一个好消息,这意味着使用Flutter Image没有OOM的风险,能够较好的利用Native内存。

使用Image的时候,建立一个内存缓存池是个好习惯,Flutter Framework提供了一个ImageCache来缓存加载的图片,但它不同于Android Lru Cache,不能精确的使用内存大小来设定缓存池容量,而是只能粗略的指定最大缓存图片张数。

FlutterView内存初探
Flutter设计之初是想统一Android和IOS的界面编程,所以理想的基于Flutter的apk只需要提供一个MainActivity做入口即可,后面所有的页面跳转都在FlutterView中管理。但是,如果是一个已有规模的app接入Flutter开发,我们不可能将已有的Activity页面都用Flutter重新实现一遍,这时候就需要考虑本地页面和Flutter页面之间的跳转交互了。iOS可以方便的管理页面栈,但是Android就很复杂(Android有任务栈机制,低内存Activity回收机制等),所以通常我们还是使用Activity作为页面容器来展示flutter页面。这时有两种选择,可以每次启动一个Activity就启动一个新的FlutterView,也可以启动Activity的时候复用已有的FlutterView。

不复用FlutterView

复用FlutterView

Flutter Framework中FlutterView是绑定Activity使用的,要复用FlutterView就必须能够把FlutterView单独拎出来使用。所幸现在FlutterView和Activity耦合程度并不很深,最关键的地方是FlutterNativeView必须attach一个Activity:

//attach到当前ActivitymNativeView.attachViewAndActivity(this, activity);

初始化FlutterView时必须传入一个Activity,当其他Activity复用FlutterView时再调用该Attach方法即可。这里有个问题,就是FlutterView中必须保存一个Activity引用,这个一个内存泄露隐患,我们可以在FluterView detach时候将MainActivity传入,因为通常整个App交互过程中MainActivity都是一直存在的,可以避免其他Activity泄露。

为了更好的权衡两种方法的利弊,我们先用空页面来测试一下当页面增加时内存的变化:

不复用FlutterView时,页面增加时内存变化

复用FlutterView时,页面增加时内存变化

不复用FlutterView时平均打开一个页面(空页面),Java内存增长0.02M,Native内存增长0.73M。复用FlutterView时平均打开一个页面(空页面),Java内存增长0.019M,Native内存增长0.65M。可见复用FlutterView在内存使用上是有优势的,但主要复用的还是Native部分的内存。复用FlutterView必然带来额外的一些复杂逻辑,有时候为了逻辑简单,后期维护上的方便,牺牲一些相对不太珍贵的Native内存也是值得的。

复用单个FlutterView有时会有些“意外”,比如当Activity切换时,就不得不将当前FlutterView detach掉给后面新建的Activity使用,当前界面就会空白闪动,有个想法是可以将当前界面截屏下来遮挡住后面的界面变化,这种方式有时会带来额外的适配问题。

FlutterView复用与否不是绝对的,有时候可以使用一些综合性折中方案,比如,我们可以建立一个FlutterViewProvider,里面维护N个可复用的FlutterView,如图:

这样的好处是,可以存在一定程度上的复用,又可以避免只有一个FlutterView出现的一些尴尬问题。

FlutterView的首帧渲染耗时较高,在Debug版本有明显感受,大概会黑屏2秒,release版本会好很多。但我们观察Cpu曲线,发现还是一个较为耗时的过程。有一种体验优化的思路是,我们可以预先让将要使用的FlutterView加载好首帧,这样,在真正使用的时候就很快了,可以先建立一个只有1个像素的窗口,在这个窗口里面完成FlutterView首帧渲染,代码如下:

final WindowManager wm = mFakeActivity.getWindowManager();final FrameLayout root = new FrameLayout(mFakeActivity);     
//一个像素足矣FrameLayout.LayoutParams params = new FrameLayout.LayoutParams(1, 1);
root.addView(flutterView,params);
WindowManager.LayoutParams wlp = new WindowManager.LayoutParams();
wlp.width = 1;
wlp.height = 1;
wlp.flags |= WindowManager.LayoutParams.FLAG_NOT_FOCUSABLE;
wlp.flags |= WindowManager.LayoutParams.FLAG_NOT_TOUCHABLE;
wm.addView(root,wlp);final FlutterView.FirstFrameListener[] listenerRef = new FlutterView.FirstFrameListener[1];
    listenerRef[0] = new FlutterView.FirstFrameListener() {
        @Override       public void onFirstFrame() {           //首帧渲染完后取消窗口
             wm.removeView(root);
          flutterView.removeFirstFrameListener(listenerRef[0]);
       }
       };

flutterView.addFirstFrameListener(listenerRef[0]);String appBundlePath = FlutterMain.findAppBundlePath(mFakeActivity.getApplicationContext());
flutterView.runFromBundle(appBundlePath, null, "main", true);

原文链接

原文地址:http://blog.51cto.com/13679539/2135157

时间: 2024-10-10 23:41:04

Android Flutter实践内存初探的相关文章

Android开发实践:检测App的内存占用和泄漏

来源:http://www.linuxidc.com/Linux/2014-03/97563.htm 前段时间开发的Android应用,每次都是在运行了半个小时左右后突然挂掉了,很是莫名其妙,也不知道哪里出了问题,后来一步步排查,发现问题出在JNI层,一个被频繁调用的函数分配的内存忘记释放,导致内存泄漏. 这次问题使我明白,别以为Android程序是基于Java语言,有强大的垃圾回收机制,就完全不用担心内存问题,其实Android程序也要特别小心你的内存,因为毕竟手机不比PC机,内存是极其有限的

Android,合理管理内存

[-] 节制地使用Service 当界面不可见时释放内存 当内存紧张时释放内存 避免在Bitmap上浪费内存 使用优化过的数据集合 知晓内存的开支情况 谨慎使用抽象编程 尽量避免使用依赖注入框架 使用ProGuard简化代码 使用多个进程 转载请注明出处:http://blog.csdn.net/guolin_blog/article/details/42238627 有不少朋友都问过我,怎样才能写出高性能的应用程序,如何避免程序出现OOM,或者当程序内存占用过高的时候该怎么样去排查.确实,一个

Android开发实践:Java层与Jni层的数组传递

Android开发中,经常会在Java代码与Jni层之间传递数组(byte[]),一个典型的应用是Java层把需要发送给客户端的数据流传递到Jni层,由Jni层的Socket代码发送出去,当然,Jni层也需要把从Socket接收到的数据流返回给Java层.我简单地总结了一下,从Java层到Jni层,从Jni层到JAVA层,各有3种传递方式,下面用代码示例简单地介绍一下. 示例代码的主要文件有两个,一个是Native.java,是Java层的类:另一个是Native.c,是JNI层的文件,关键的地

【转】Android中的内存管理--不错不错,避免使用枚举类型

原文网址:http://android-performance.com/android/2014/02/17/android-manage-memory.html 本文内容翻译自:http://developer.android.com/training/articles/memory.html 随机存取存储器(RAM)再任何软件开发环境中都是宝贵的资源,但是在移动操作系统中,内存资源更为宝贵,使用时也会收到限制.虽然Android的Dalvik虚拟机有运行时的垃圾回收机制,但是这不意味着你的A

Android最佳实践之高效的应用导航

设计(一)- 规划Screens和他们之间的关系 原文地址:http://developer.android.com/training/design-navigation/screen-planning.html#beyond-simplistic-design 设计和开发Android应用程序的第一个步骤是确定用户能够查看和处理应用.一旦你知道用户与之交互的应用程序之间交互什么数据,下一步就是设计交互,允许用户导航到app的不同部分,进入和退出应用程序中的界面. 这篇文章开始向你展示如何规划高

Android最佳性能实践(三)——高性能编码优化

转载请注明出处:http://blog.csdn.net/guolin_blog/article/details/42318689 在前两篇文章当中,我们主要学习了Android内存方面的相关知识,包括如何合理地使用内存,以及当发生内存泄露时如何定位出问题的原因.那么关于内存的知识就讨论到这里,今天开始我们将学习一些性能编码优化的技巧. 这里先事先提醒大家一句,本篇文章中讨论的编码优化技巧都是属于一些"微优化",也就是说即使我们都按照本篇文章的技巧来优化代码,在性能方面也是看不出有什么

Android 终端性能测试——内存篇

前言 做Android QQ性能测试时,内存测试中遇到不少困惑,"各种"内存术语,到底什么意思,怎么获取,这里总结一下. 进行的内存测试主要有两个方面,一,OOM的发现和定位,二,同历史版本或竞品的对比测试.关于oom可以用MAT进行分析,具体分析方法参见susanwu在km上的文章<如何使用Memory_Analyzer分析内存泄漏>.下面主要总结一下Android性能测试中常用的方法及解释 一:running services"查看service进程内存 从A

Android最佳性能实践(四)——布局优化技巧

在前面几篇文章当中,我们学习了如何通过合理管理内存,以及高性能编码技巧的方式来提升应用程序的性能.然而实际上界面布局也会对应用程序的性能产生比较大的影响,如果布局写得糟糕的话,那么程序加载UI的速度就会非常慢,从而造成不好的用户体验.那么本篇文章我们就来学习一下,如何通过优化布局来提供应用程序的性能.还没有看过前面前面一篇文章的朋友建议可以先去阅读 Android最佳性能实践(三)——高性能编码优化 . 重用布局文件 Android系统中已经提供了非常多好用的控件,这让我们在编写布局的时候可以很

查找并修复Android中的内存泄露—OutOfMemoryError

[编者按]本文作者为来自南非约翰内斯堡的女程序员 Rebecca Franks,Rebecca 热衷于安卓开发,拥有4年安卓应用开发经验.有点完美主义者,喜爱美食. 本文系国内ITOM管理平台 OneAPM 编译呈现,以下为正文. Android 程序中很容易出现内存泄露问题.毫无戒心的开发者可能每天都会造成一些内存泄露,却不自知.你可能从未注意过这类错误,或者甚至都不知道它们的存在.直到你遇到下面这样的异常: java.lang.OutOfMemoryError: Failed to allo