目标跟踪之camshift---opencv中meanshift和camshift例子的应用

在这一节中,主要讲目标跟踪的一个重要的算法Camshift,因为它是连续自使用的meanShift,所以这2个函数opencv中都有,且都很重要。为了让大家先达到一个感性认识。这节主要是看懂和运行opencv中给的sample并稍加修改。

Camshift函数的原型为:RotatedRect CamShift(InputArray probImage, Rect& window, TermCriteria criteria)。

其中probImage为输入图像直方图的反向投影图,window为要跟踪目标的初始位置矩形框,criteria为算法结束条件。函数返回一个有方向角度的矩阵。该函数的实现首先是利用meanshift算法计算出要跟踪的中心,然后调整初始窗口的大小位置和方向角度。在camshift内部调用了meanshift算法计算目标的重心。

下面是一个opencv自带的CamShift算法使用工程实例。该实例的作用是跟踪摄像头中目标物体,目标物体初始位置用鼠标指出,其跟踪窗口大小和方向随着目标物体的变化而变化。其代码及注释大概如下:

#include "StdAfx.h"

#include "opencv2/video/tracking.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"

#include <iostream>
#include <ctype.h>

using namespace cv;
using namespace std;

Mat image;

bool backprojMode = false; //表示是否要进入反向投影模式,ture表示准备进入反向投影模式
bool selectObject = false;//代表是否在选要跟踪的初始目标,true表示正在用鼠标选择
int trackObject = 0; //代表跟踪目标数目
bool showHist = true;//是否显示直方图
Point origin;//用于保存鼠标选择第一次单击时点的位置
Rect selection;//用于保存鼠标选择的矩形框
int vmin = 10, vmax = 256, smin = 30;

void onMouse( int event, int x, int y, int, void* )
{
if( selectObject )//只有当鼠标左键按下去时才有效,然后通过if里面代码就可以确定所选择的矩形区域selection了
{
selection.x = MIN(x, origin.x);//矩形左上角顶点坐标
selection.y = MIN(y, origin.y);
selection.width = std::abs(x - origin.x);//矩形宽
selection.height = std::abs(y - origin.y);//矩形高

selection &= Rect(0, 0, image.cols, image.rows);//用于确保所选的矩形区域在图片范围内
}

switch( event )
{
case CV_EVENT_LBUTTONDOWN:
origin = Point(x,y);
selection = Rect(x,y,0,0);//鼠标刚按下去时初始化了一个矩形区域
selectObject = true;
break;
case CV_EVENT_LBUTTONUP:
selectObject = false;
if( selection.width > 0 && selection.height > 0 )
trackObject = -1;
break;
}
}

void help()
{
cout << "\nThis is a demo that shows mean-shift based tracking\n"
"You select a color objects such as your face and it tracks it.\n"
"This reads from video camera (0 by default, or the camera number the user enters\n"
"Usage: \n"
" ./camshiftdemo [camera number]\n";

cout << "\n\nHot keys: \n"
"\tESC - quit the program\n"
"\tc - stop the tracking\n"
"\tb - switch to/from backprojection view\n"
"\th - show/hide object histogram\n"
"\tp - pause video\n"
"To initialize tracking, select the object with mouse\n";
}

const char* keys =
{
"{1| | 0 | camera number}"
};

int main( int argc, const char** argv )
{
help();

VideoCapture cap; //定义一个摄像头捕捉的类对象
Rect trackWindow;
RotatedRect trackBox;//定义一个旋转的矩阵类对象
int hsize = 16;
float hranges[] = {0,180};//hranges在后面的计算直方图函数中要用到
const float* phranges = hranges;
CommandLineParser parser(argc, argv, keys);//命令解析器函数
int camNum = parser.get<int>("1");

cap.open(camNum);//直接调用成员函数打开摄像头

if( !cap.isOpened() )
{
help();
cout << "***Could not initialize capturing...***\n";
cout << "Current parameter‘s value: \n";
parser.printParams();
return -1;
}

namedWindow( "Histogram", 0 );
namedWindow( "CamShift Demo", 0 );
setMouseCallback( "CamShift Demo", onMouse, 0 );//消息响应机制
createTrackbar( "Vmin", "CamShift Demo", &vmin, 256, 0 );//createTrackbar函数的功能是在对应的窗口创建滑动条,滑动条Vmin,vmin表示滑动条的值,最大为256
createTrackbar( "Vmax", "CamShift Demo", &vmax, 256, 0 );//最后一个参数为0代表没有调用滑动拖动的响应函数
createTrackbar( "Smin", "CamShift Demo", &smin, 256, 0 );//vmin,vmax,smin初始值分别为10,256,30

Mat frame, hsv, hue, mask, hist, histimg = Mat::zeros(200, 320, CV_8UC3), backproj;
bool paused = false;

for(;;)
{
if( !paused )//没有暂停
{
cap >> frame;//从摄像头抓取一帧图像并输出到frame中
if( frame.empty() )
break;
}

frame.copyTo(image);

if( !paused )//没有按暂停键
{
cvtColor(image, hsv, CV_BGR2HSV);//将rgb摄像头帧转化成hsv空间的

if( trackObject )//trackObject初始化为0,或者按完键盘的‘c‘键后也为0,当鼠标单击松开后为-1
{
int _vmin = vmin, _vmax = vmax;

//inRange函数的功能是检查输入数组每个元素大小是否在2个给定数值之间,可以有多通道,mask保存0通道的最小值,也就是h分量
//这里利用了hsv的3个通道,比较h,0~180,s,smin~256,v,min(vmin,vmax),max(vmin,vmax)。如果3个通道都在对应的范围内,则
//mask对应的那个点的值全为1(0xff),否则为0(0x00).
inRange(hsv, Scalar(0, smin, MIN(_vmin,_vmax)),
Scalar(180, 256, MAX(_vmin, _vmax)), mask);
int ch[] = {0, 0};
hue.create(hsv.size(), hsv.depth());//hue初始化为与hsv大小深度一样的矩阵,色调的度量是用角度表示的,红绿蓝之间相差120度,反色相差180度
mixChannels(&hsv, 1, &hue, 1, ch, 1);//将hsv第一个通道(也就是色调)的数复制到hue中,0索引数组

if( trackObject < 0 )//鼠标选择区域松开后,该函数内部又将其赋值1
{
//此处的构造函数roi用的是Mat hue的矩阵头,且roi的数据指针指向hue,即共用相同的数据,select为其感兴趣的区域
Mat roi(hue, selection), maskroi(mask, selection);//mask保存的hsv的最小值

//calcHist()函数第一个参数为输入矩阵序列,第2个参数表示输入的矩阵数目,第3个参数表示将被计算直方图维数通道的列表,第4个参数表示可选的掩码函数
//第5个参数表示输出直方图,第6个参数表示直方图的维数,第7个参数为每一维直方图数组的大小,第8个参数为每一维直方图bin的边界
calcHist(&roi, 1, 0, maskroi, hist, 1, &hsize, &phranges);//将roi的0通道计算直方图并通过mask放入hist中,hsize为每一维直方图的大小
normalize(hist, hist, 0, 255, CV_MINMAX);//将hist矩阵进行数组范围归一化,都归一化到0~255

trackWindow = selection;
trackObject = 1;//只要鼠标选完区域松开后,且没有按键盘清0键‘c‘,则trackObject一直保持为1,因此该if函数只能执行一次,除非重新选择跟踪区域

histimg = Scalar::all(0);//与按下‘c‘键是一样的,这里的all(0)表示的是标量全部清0
int binW = histimg.cols / hsize; //histing是一个200*300的矩阵,hsize应该是每一个bin的宽度,也就是histing矩阵能分出几个bin出来
Mat buf(1, hsize, CV_8UC3);//定义一个缓冲单bin矩阵
for( int i = 0; i < hsize; i++ )//saturate_case函数为从一个初始类型准确变换到另一个初始类型
buf.at<Vec3b>(i) = Vec3b(saturate_cast<uchar>(i*180./hsize), 255, 255);//Vec3b为3个char值的向量
cvtColor(buf, buf, CV_HSV2BGR);//将hsv又转换成bgr

for( int i = 0; i < hsize; i++ )
{
int val = saturate_cast<int>(hist.at<float>(i)*histimg.rows/255);//at函数为返回一个指定数组元素的参考值
rectangle( histimg, Point(i*binW,histimg.rows), //在一幅输入图像上画一个简单抽的矩形,指定左上角和右下角,并定义颜色,大小,线型等
Point((i+1)*binW,histimg.rows - val),
Scalar(buf.at<Vec3b>(i)), -1, 8 );
}
}

calcBackProject(&hue, 1, 0, hist, backproj, &phranges);//计算直方图的反向投影,计算hue图像0通道直方图hist的反向投影,并让入backproj中
backproj &= mask;

//opencv2.0以后的版本函数命名前没有cv两字了,并且如果函数名是由2个意思的单词片段组成的话,且前面那个片段不够成单词,则第一个字母要
//大写,比如Camshift,如果第一个字母是个单词,则小写,比如meanShift,但是第二个字母一定要大写
RotatedRect trackBox = CamShift(backproj, trackWindow, //trackWindow为鼠标选择的区域,TermCriteria为确定迭代终止的准则
TermCriteria( CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 10, 1 ));//CV_TERMCRIT_EPS是通过forest_accuracy,CV_TERMCRIT_ITER
if( trackWindow.area() <= 1 ) //是通过max_num_of_trees_in_the_forest
{
int cols = backproj.cols, rows = backproj.rows, r = (MIN(cols, rows) + 5)/6;
trackWindow = Rect(trackWindow.x - r, trackWindow.y - r,
trackWindow.x + r, trackWindow.y + r) &
Rect(0, 0, cols, rows);//Rect函数为矩阵的偏移和大小,即第一二个参数为矩阵的左上角点坐标,第三四个参数为矩阵的宽和高
}

if( backprojMode )
cvtColor( backproj, image, CV_GRAY2BGR );//因此投影模式下显示的也是rgb图?
ellipse( image, trackBox, Scalar(0,0,255), 3, CV_AA );//跟踪的时候以椭圆为代表目标
}
}

//后面的代码是不管pause为真还是为假都要执行的
else if( trackObject < 0 )//同时也是在按了暂停字母以后
paused = false;

if( selectObject && selection.width > 0 && selection.height > 0 )
{
Mat roi(image, selection);
bitwise_not(roi, roi);//bitwise_not为将每一个bit位取反
}

imshow( "CamShift Demo", image );
imshow( "Histogram", histimg );

char c = (char)waitKey(10);
if( c == 27 ) //退出键
break;
switch(c)
{
case ‘b‘: //反向投影模型交替
backprojMode = !backprojMode;
break;
case ‘c‘: //清零跟踪目标对象
trackObject = 0;
histimg = Scalar::all(0);
break;
case ‘h‘: //显示直方图交替
showHist = !showHist;
if( !showHist )
destroyWindow( "Histogram" );
else
namedWindow( "Histogram", 1 );
break;
case ‘p‘: //暂停跟踪交替
paused = !paused;
break;
default:
;
}
}
return 0;
}

运行截图如下(由于摄像头中一般会拍到人,影响不好,所以含目标物体的截图就不贴上来了):

另外,由于Camshift主要是利用到了meanShift算法,在目标跟踪领域应用比较广泛,而meanShift也可以用于目标跟踪,只是自适用性没CamShift好,但也可以用。首先看看meanShift算法的声明:

int meanShift(InputArray probImage, Rect& window, TermCriteria criteria)

与CamShift函数不同的一点是,它返回的不是一个矩形框,而是一个int型变量。该int型变量应该是代表找到目标物体的个数。特别需要注意的是参数window,它不仅是目标物体初始化的位置,还是实时跟踪目标后的位置,所以其实也是一个返回值。由于meanShift好像主要不是用于目标跟踪上,很多应用是在图像分割上。但是这里还是将CamShift算法例子稍微改一下,就成了meanShift算法了。主要是用window代替CamShift中的trackWindow.

其代码注释如下:

#include "StdAfx.h"

#include "opencv2/video/tracking.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"

#include <iostream>
#include <ctype.h>

using namespace cv;
using namespace std;

Mat image;

bool backprojMode = false; //表示是否要进入反向投影模式,ture表示准备进入反向投影模式
bool selectObject = false;//代表是否在选要跟踪的初始目标,true表示正在用鼠标选择
int trackObject = 0; //代表跟踪目标数目
bool showHist = true;//是否显示直方图
Point origin;//用于保存鼠标选择第一次单击时点的位置
Rect selection;//用于保存鼠标选择的矩形框
int vmin = 10, vmax = 256, smin = 30;

void onMouse( int event, int x, int y, int, void* )
{
if( selectObject )//只有当鼠标左键按下去时才有效,然后通过if里面代码就可以确定所选择的矩形区域selection了
{
selection.x = MIN(x, origin.x);//矩形左上角顶点坐标
selection.y = MIN(y, origin.y);
selection.width = std::abs(x - origin.x);//矩形宽
selection.height = std::abs(y - origin.y);//矩形高

selection &= Rect(0, 0, image.cols, image.rows);//用于确保所选的矩形区域在图片范围内
}

switch( event )
{
case CV_EVENT_LBUTTONDOWN:
origin = Point(x,y);
selection = Rect(x,y,0,0);//鼠标刚按下去时初始化了一个矩形区域
selectObject = true;
break;
case CV_EVENT_LBUTTONUP:
selectObject = false;
if( selection.width > 0 && selection.height > 0 )
trackObject = -1;
break;
}
}

void help()
{
cout << "\nThis is a demo that shows mean-shift based tracking\n"
"You select a color objects such as your face and it tracks it.\n"
"This reads from video camera (0 by default, or the camera number the user enters\n"
"Usage: \n"
" ./camshiftdemo [camera number]\n";

cout << "\n\nHot keys: \n"
"\tESC - quit the program\n"
"\tc - stop the tracking\n"
"\tb - switch to/from backprojection view\n"
"\th - show/hide object histogram\n"
"\tp - pause video\n"
"To initialize tracking, select the object with mouse\n";
}

const char* keys =
{
"{1| | 0 | camera number}"
};

int main( int argc, const char** argv )
{
help();

VideoCapture cap; //定义一个摄像头捕捉的类对象
Rect trackWindow;
RotatedRect trackBox;//定义一个旋转的矩阵类对象
int hsize = 16;
float hranges[] = {0,180};//hranges在后面的计算直方图函数中要用到
const float* phranges = hranges;
CommandLineParser parser(argc, argv, keys);//命令解析器函数
int camNum = parser.get<int>("1");

cap.open(camNum);//直接调用成员函数打开摄像头

if( !cap.isOpened() )
{
help();
cout << "***Could not initialize capturing...***\n";
cout << "Current parameter‘s value: \n";
parser.printParams();
return -1;
}

namedWindow( "Histogram", 0 );
namedWindow( "CamShift Demo", 0 );
setMouseCallback( "CamShift Demo", onMouse, 0 );//消息响应机制
createTrackbar( "Vmin", "CamShift Demo", &vmin, 256, 0 );//createTrackbar函数的功能是在对应的窗口创建滑动条,滑动条Vmin,vmin表示滑动条的值,最大为256
createTrackbar( "Vmax", "CamShift Demo", &vmax, 256, 0 );//最后一个参数为0代表没有调用滑动拖动的响应函数
createTrackbar( "Smin", "CamShift Demo", &smin, 256, 0 );//vmin,vmax,smin初始值分别为10,256,30

Mat frame, hsv, hue, mask, hist, histimg = Mat::zeros(200, 320, CV_8UC3), backproj;
bool paused = false;

for(;;)
{
if( !paused )//没有暂停
{
cap >> frame;//从摄像头抓取一帧图像并输出到frame中
if( frame.empty() )
break;
}

frame.copyTo(image);

if( !paused )//没有按暂停键
{
cvtColor(image, hsv, CV_BGR2HSV);//将rgb摄像头帧转化成hsv空间的

if( trackObject )//trackObject初始化为0,或者按完键盘的‘c‘键后也为0,当鼠标单击松开后为-1
{
int _vmin = vmin, _vmax = vmax;

//inRange函数的功能是检查输入数组每个元素大小是否在2个给定数值之间,可以有多通道,mask保存0通道的最小值,也就是h分量
//这里利用了hsv的3个通道,比较h,0~180,s,smin~256,v,min(vmin,vmax),max(vmin,vmax)。如果3个通道都在对应的范围内,则
//mask对应的那个点的值全为1(0xff),否则为0(0x00).
inRange(hsv, Scalar(0, smin, MIN(_vmin,_vmax)),
Scalar(180, 256, MAX(_vmin, _vmax)), mask);
int ch[] = {0, 0};
hue.create(hsv.size(), hsv.depth());//hue初始化为与hsv大小深度一样的矩阵,色调的度量是用角度表示的,红绿蓝之间相差120度,反色相差180度
mixChannels(&hsv, 1, &hue, 1, ch, 1);//将hsv第一个通道(也就是色调)的数复制到hue中,0索引数组

if( trackObject < 0 )//鼠标选择区域松开后,该函数内部又将其赋值1
{
//此处的构造函数roi用的是Mat hue的矩阵头,且roi的数据指针指向hue,即共用相同的数据,select为其感兴趣的区域
Mat roi(hue, selection), maskroi(mask, selection);//mask保存的hsv的最小值

//calcHist()函数第一个参数为输入矩阵序列,第2个参数表示输入的矩阵数目,第3个参数表示将被计算直方图维数通道的列表,第4个参数表示可选的掩码函数
//第5个参数表示输出直方图,第6个参数表示直方图的维数,第7个参数为每一维直方图数组的大小,第8个参数为每一维直方图bin的边界
calcHist(&roi, 1, 0, maskroi, hist, 1, &hsize, &phranges);//将roi的0通道计算直方图并通过mask放入hist中,hsize为每一维直方图的大小
normalize(hist, hist, 0, 255, CV_MINMAX);//将hist矩阵进行数组范围归一化,都归一化到0~255

trackWindow = selection;
trackObject = 1;//只要鼠标选完区域松开后,且没有按键盘清0键‘c‘,则trackObject一直保持为1,因此该if函数只能执行一次,除非重新选择跟踪区域

histimg = Scalar::all(0);//与按下‘c‘键是一样的,这里的all(0)表示的是标量全部清0
int binW = histimg.cols / hsize; //histing是一个200*300的矩阵,hsize应该是每一个bin的宽度,也就是histing矩阵能分出几个bin出来
Mat buf(1, hsize, CV_8UC3);//定义一个缓冲单bin矩阵
for( int i = 0; i < hsize; i++ )//saturate_case函数为从一个初始类型准确变换到另一个初始类型
buf.at<Vec3b>(i) = Vec3b(saturate_cast<uchar>(i*180./hsize), 255, 255);//Vec3b为3个char值的向量
cvtColor(buf, buf, CV_HSV2BGR);//将hsv又转换成bgr

for( int i = 0; i < hsize; i++ )
{
int val = saturate_cast<int>(hist.at<float>(i)*histimg.rows/255);//at函数为返回一个指定数组元素的参考值
rectangle( histimg, Point(i*binW,histimg.rows), //在一幅输入图像上画一个简单抽的矩形,指定左上角和右下角,并定义颜色,大小,线型等
Point((i+1)*binW,histimg.rows - val),
Scalar(buf.at<Vec3b>(i)), -1, 8 );
}
}

calcBackProject(&hue, 1, 0, hist, backproj, &phranges);//计算直方图的反向投影,计算hue图像0通道直方图hist的反向投影,并让入backproj中
backproj &= mask;

//opencv2.0以后的版本函数命名前没有cv两字了,并且如果函数名是由2个意思的单词片段组成的话,且前面那个片段不够成单词,则第一个字母要
//大写,比如Camshift,如果第一个字母是个单词,则小写,比如meanShift,但是第二个字母一定要大写
meanShift(backproj, trackWindow, //trackWindow为鼠标选择的区域,TermCriteria为确定迭代终止的准则
TermCriteria( CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 10, 1 ));//CV_TERMCRIT_EPS是通过forest_accuracy,CV_TERMCRIT_ITER
if( trackWindow.area() <= 1 ) //是通过max_num_of_trees_in_the_forest
{
int cols = backproj.cols, rows = backproj.rows, r = (MIN(cols, rows) + 5)/6;
trackWindow = Rect(trackWindow.x - r, trackWindow.y - r,
trackWindow.x + r, trackWindow.y + r) &
Rect(0, 0, cols, rows);//Rect函数为矩阵的偏移和大小,即第一二个参数为矩阵的左上角点坐标,第三四个参数为矩阵的宽和高
}

if( backprojMode )
cvtColor( backproj, image, CV_GRAY2BGR );//因此投影模式下显示的也是rgb图?
//ellipse( image, trackBox, Scalar(0,0,255), 3, CV_AA );//跟踪的时候以椭圆为代表目标
rectangle(image,Point(trackWindow.x,trackWindow.y),Point(trackWindow.x+trackWindow.width,trackWindow.y+trackWindow.height),Scalar(0,0,255),-1,CV_AA);
}
}

//后面的代码是不管pause为真还是为假都要执行的
else if( trackObject < 0 )//同时也是在按了暂停字母以后
paused = false;

if( selectObject && selection.width > 0 && selection.height > 0 )
{
Mat roi(image, selection);
bitwise_not(roi, roi);//bitwise_not为将每一个bit位取反
}

imshow( "CamShift Demo", image );
imshow( "Histogram", histimg );

char c = (char)waitKey(10);
if( c == 27 ) //退出键
break;
switch(c)
{
case ‘b‘: //反向投影模型交替
backprojMode = !backprojMode;
break;
case ‘c‘: //清零跟踪目标对象
trackObject = 0;
histimg = Scalar::all(0);
break;
case ‘h‘: //显示直方图交替
showHist = !showHist;
if( !showHist )
destroyWindow( "Histogram" );
else
namedWindow( "Histogram", 1 );
break;
case ‘p‘: //暂停跟踪交替
paused = !paused;
break;
default:
;
}
}
return 0;
}

本文感性上认识了怎样使用meanShift()和CamShift()函数,跟进一步的实现原理需要看其相关的论文和代码才能理解。但是从本例中调用的其它函数也可以学到很多opencv函数,效果还是很不错的。

时间: 2025-01-17 04:51:41

目标跟踪之camshift---opencv中meanshift和camshift例子的应用的相关文章

目标跟踪学习笔记_1(opencv中meanshift和camshift例子的应用)

在这一节中,主要讲目标跟踪的一个重要的算法Camshift,因为它是连续自使用的meanShift,所以这2个函数opencv中都有,且都很重要.为了让大家先达到一个感性认识.这节主要是看懂和运行opencv中给的sample并稍加修改. Camshift函数的原型为:RotatedRect CamShift(InputArray probImage, Rect& window, TermCriteria criteria). 其中probImage为输入图像直方图的反向投影图,window为要

OpenCV中Delaunay三角网算法例子

#include <opencv2/opencv.hpp> #include <vector> using namespace cv; using namespace std; typedef struct _TRIANGLE_DESC_ { Point pt1, pt2, pt3; _TRIANGLE_DESC_(const Point _pt1, const Point _pt2, const Point _pt3): pt1(_pt1), pt2(_pt2), pt3(_pt

目标跟踪--CamShift

转载请注明出处! !! http://blog.csdn.net/zhonghuan1992 目标跟踪--CamShift CamShift全称是ContinuouslyAdaptive Mean Shift,即连续自适应的MeanShift算法.而MeanShift算法,首先得对MeanShift算法有个初步的了解,可以參考这里.而CamShift是在MeanShift的基础上,依据上一帧的结果.来调整下一帧的中心位置和窗体大小,所以.当跟踪的目标在视频中发生变化时,可以对这个变化有一定的调整

有关meanshift跟踪的理解(在opencv中实现)(转载)

meanshift算法思想其实很简单:利用概率密度的梯度爬升来寻找局部最优.它要做的就是输入一个在图像的范围,然后一直迭代(朝着重心迭代)直到满足你的要求为止.但是他是怎么用于做图像跟踪的呢?这是我自从学习meanshift以来,一直的困惑.而且网上也没有合理的解释.经过这几天的思考,和对反向投影的理解使得我对它的原理有了大致的认识. 在opencv中,进行meanshift其实很简单,输入一张图像(imgProb),再输入一个开始迭代的方框(windowIn)和一个迭代条件(criteria)

Qt 5.3 下OpenCV 2.4.11 开发(11)CamShift 目标跟踪

控制台应用下,使用鼠标在预览摄像头上进行截图,截图内容为目标所在区域的矩形,然后利用函数CamShift 函数对目标进行跟踪,代码如下,要记得添加项目引用库,章节目录有: #include <QCoreApplication> #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> #inclu

目标跟踪之粒子滤波---Opencv实现粒子滤波算法

目标跟踪学习笔记_2(particle filter初探1) 目标跟踪学习笔记_3(particle filter初探2) 前面2篇博客已经提到当粒子数增加时会内存报错,后面又仔细查了下程序,是代码方面的问题.所以本次的代码与前几次改变比较小.当然这些code基本也是参考网上的.代码写得很不规范,时间不够,等以后有机会将其优化并整理成类的形式.)              Opencv实现粒子滤波算法            摘要 本文通过opencv实现了一种目标跟踪算法——粒子滤波算法,算法的

基于MeanShift的目标跟踪算法及实现

一.简介 首先扯扯无参密度估计理论,无参密度估计也叫做非参数估计,属于数理统计的一个分支,和参数密度估计共同构成了概率密度估计方法.参数密度估计方法要求特征空间服从一个已知的概率密度函数,在实际的应用中这个条件很难达到.而无参数密度估计方法对先验知识要求最少,完全依靠训练数据进行估计,并且可以用于任意形状的密度估计.所以依靠无参密度估计方法,即不事先规定概率密度函数的结构形式,在某一连续点处的密度函数值可由该点邻域中的若干样本点估计得出.常用的无参密度估计方法有:直方图法.最近邻域法和核密度估计

meanshift应用于目标跟踪

这个文章并不是详细的讲解,只是总结一下我用meanshift的一些体会 先简单说一下meanshift算法的原理: 如下图所示,先指定一个区域,通过把指定区域的几何中心与质心想比较,如果相差较大,将区域的几何中心移到质心处,然后继续做比较.直到这个区域的几何中心与质心重合.用这个方法,可以找到一个图片中点最密集的地方. 将meanshift应用于目标跟踪,其实就是构造一个运行图片的PDF,然后应用上述的梯度爬坡的思想,找到最密集的区域.基本思路如下: 1 在A帧中选择一个目标a 2 根据B帧与a

opencv中的meanshift图像切割

Meanshift(均值漂移)是一种在一组数据的密度分布中寻找局部极值的稳定的方法.Meanshift不仅能够用于图像滤波,视频跟踪,还能够用于图像切割. 通过给出一组多维数据点,其维数是(x,y,r,g,b),均值漂移能够用一个窗体扫描空间来找到数据密度最大的区域,能够理解为数据分布最集中的区域. 在这里须要注意,因为空间位置(也就是上面的x和y)的变化范围与颜色的变化范围(上面的r,g,b)有极大的不同,所以,meanshift对这两个维数要採用不同的窗体半径.在opencv自带的means