简单博弈论取石子

  有一种很有意思的游戏,就是有物体若干堆,可以是火柴棍或是围棋子等等均可。两个人轮流从堆中取物体若干,规定最后取光物体者取胜。这是我国民间很古老的一个游戏,别看这游戏极其简单,却蕴含着深刻的数学原理。下面我们来分析一下要如何才能够取胜。

(一)巴什博弈(Bash Game,同余理论):只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个。最后取光者得胜。

  显然,如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜。因此我们发现了如何取胜的法则:如果n=(m+1)r+s,(r为任意自然数,s≤m),那么先取者要拿走s个物品,如果后取者拿走k(≤m)个,那么先取者再拿走m+1-k个,结果剩下(m+1)(r-1)个,以后保持这样的取法,那么先取者肯定获胜。总之,要保持给对手留下(m+1)的倍数,就能最后获胜。这个游戏还可以有一种变相的玩法:两个人轮流报数,每次至少报一个,最多报十个,谁能报到100者胜。

(二)威佐夫博弈(Wythoff Game,黄金分割):有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

   这种情况下是颇为复杂的。我们用(ak,bk)(ak ≤ bk ,k=0,1,2,...,n)表示两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势。前几个奇异局势是:(0,0)、(1,2)、(3,5)、(4,7)、(6,10)、(8,13)、(9,15)、(11,18)、(12,20)。可以看出,a0=b0=0,ak是未在前面出现过的最小自然数,而 bk= ak + k,奇异局势有如下三条性质:

  1。任何自然数都包含在一个且仅有一个奇异局势中。由于ak是未在前面出现过的最小自然数,所以有ak > ak-1 ,而 bk= ak + k > ak-1 + k-1 = bk-1> ak-1 。所以性质1。成立。

  2。任意操作都可将奇异局势变为非奇异局势。

事实上,若只改变奇异局势(ak,bk)的某一个分量,那么另一个分量不可能在其他奇异局势中,所以必然是非奇异局势。如果使(ak,bk)的两个分量同时减少,则由于其差不变,且不可能是其他奇异局势的差,因此也是非奇异局势。

  3。采用适当的方法,可以将非奇异局势变为奇异局势。假设面对的局势是(a,b),若 b = a,则同时从两堆中取走 a 个物体,就变为了奇异局势(0,0);

  如果a = ak ,b > bk,那么,取走b - bk个物体,即变为奇异局势;如果 a = ak , b < bk ,则同时从两堆中拿走 ak - ab - ak个物体,变为奇异局势( ab - ak , ab - ak+ b - ak);如果a > ak ,b= ak + k,则从第一堆中拿走多余的数量a - ak 即可;

  如果a < ak ,b= ak + k,分两种情况,第一种,a=aj (j < k),从第二堆里面拿走 b - bj 即可;第二种,a=bj (j < k),从第二堆里面拿走 b - aj即可。

  从如上性质可知,两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜;反之,则后拿者取胜。

  那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式:ak =[k(1+√5)/2],bk= ak + k (k=0,1,2,...,n 方括号表示取整函数)奇妙的是其中出现了黄金分割数(1+√5)/2 = 1。618...,

  因此,由ak,bk组成的矩形近似为黄金矩形,由于2/(1+√5)=(√5-1)/2,可以先求出j=[a(√5-1)/2],若a=[j(1+√5)/2],那么a = aj,bj= aj + j,若不等于,那么a = aj+1,bj+1 = aj+1+ j + 1,若都不是,那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异局势。

(三)尼姆博弈(Nim      Game,异或理论):有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

   这种情况最有意思,它与二进制有密切关系,我们用(a,b,c)表示某种局势,首先(0,0,0)显然是奇异局势,无论谁面对奇异局势,都必然失败。

  第二种奇异局势是(0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0)。仔细分析一下,(1,2,3)也是奇异局势,无论对手如何拿,接下来都可以变为(0,n,n)的情形。计算机算法里面有一种叫做按位模2加,也叫做异或的运算,我们用符号(+)表示这种运算。这种运算和一般加法不同的一点是1+1=0。先看(1,2,3)的按位模2加的结果:

1 =二进制01
2 =二进制10
3 =二进制11 (+)
———————
0 =二进制00 (注意不进位)

对于奇异局势(0,n,n)也一样,结果也是0。

任何奇异局势(a,b,c)都有a(+)b(+)c =0。如果我们面对的是一个非奇异局势(a,b,c),要如何变为奇异局势呢?假设 a < b< c,我们只要将 c变为 a(+)b,即可,因为有如下的运算结果: a(+)b(+)(a(+)b)=(a(+)a)(+)(b(+)b)=0(+)0=0。要将c 变为a(+)b,只要从 c中减去 c-(a(+)b)即可。

例1。(14,21,39),14(+)21=27,39-27=12,所以从39中拿走12个物体即可达到奇异局势(14,21,27)。

例2。(55,81,121),55(+)81=102,121-102=19,所以从121中拿走19个物品就形成了奇异局势(55,81,102)。

例3。(29,45,58),29(+)45=48,58-48=10,从58中拿走10个,变为(29,45,48)。

例4。我们来实际进行一盘比赛看看:
         甲:(7,8,9)->(1,8,9)奇异局势
         乙:(1,8,9)->(1,8,4)
         甲:(1,8,4)->(1,5,4)奇异局势
         乙:(1,5,4)->(1,4,4)
         甲:(1,4,4)->(0,4,4)奇异局势
         乙:(0,4,4)->(0,4,2)
         甲:(0.4,2)->(0,2,2)奇异局势
         乙:(0,2,2)->(0,2,1)
         甲:(0,2,1)->(0,1,1)奇异局势
         乙:(0,1,1)->(0,1,0)
         甲:(0,1,0)->(0,0,0)奇异局势
         甲胜。

时间: 2024-10-16 09:11:25

简单博弈论取石子的相关文章

博弈论 取石子

谢谢CSDN的 飘来的小牛 来源:http://blog.csdn.net/niushuai666/article/details/6638943 一.巴什博奕(Bash Game): 首先我们来玩一个比较古老的报数游戏.A和B一起报数,每个人每次最少报一个,最多报4个.轮流报数,看谁先报到30. 如果不知道巴什博弈的可能会觉得这个是个有运气成分的问题,但是如果知道的人一定知道怎样一定可以赢. 比如A先报数的话,那么B一定可以赢(这里假定B知道怎么正确的报数) B可以这样报数,每次报5-k(A)

poj 1067||hdu 1527 取石子游戏(博弈论,Wythoff Game)

取石子游戏 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 37893   Accepted: 12684 Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者

HDU 2516 取石子游戏 (博弈论)

取石子游戏 Problem Description 1堆石子有n个,两人轮流取.先取者第1次能够取随意多个,但不能所有取完.以后每次取的石子数不能超过上次取子数的2倍.取完者胜.先取者负输出"Second win".先取者胜输出"First win". Input 输入有多组.每组第1行是2<=n<2^31. n=0退出. Output 先取者负输出"Second win". 先取者胜输出"First win".

POJ1067 取石子游戏 威佐夫博弈 博弈论

http://poj.org/problem?id=1067 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者. Input 输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000

bzoj 1874 取石子游戏 题解 &amp;amp; SG函数初探

[原题] 1874: [BeiJing2009 WinterCamp]取石子游戏 Time Limit: 5 Sec  Memory Limit: 162 MB Submit: 334  Solved: 122 [Submit][Status] Description 小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这种,每一个人每次能够从一堆石子中取出若干个石子,每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问你他是否有必胜策略,假设有,第一步怎样取石子. In

bzoj 1874 取石子游戏 题解 &amp; SG函数初探

[原题] 1874: [BeiJing2009 WinterCamp]取石子游戏 Time Limit: 5 Sec  Memory Limit: 162 MB Submit: 334  Solved: 122 [Submit][Status] Description 小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子,每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问你他是否有必胜策略,如果有,第一步如何取石子. In

17.12.22 取石子问题

取石子问题 描述 有两堆石子,两个人轮流去取.每次取的时候,只能从较多的那堆石子里取,并且取的数目必须是较少的那堆石子数目的整数倍.最后谁能够把一堆石子取空谁就算赢. 比如初始的时候两堆石子的数目是25和7 25 7 --> 11 7 --> 4 7 --> 4 3 --> 1 3 --> 1 0 选手1取 选手2取 选手1取 选手2取 选手1取 最后选手1(先取的)获胜,在取的过程中选手2都只有唯一的一种取法. 给定初始时石子的数目,如果两个人都采取最优策略,请问先手能否获

简单博弈论总结

简单博弈论 本次简单博弈论讲解六个知识点: 1:bash博弈:2:nim博弈:3:威佐夫博弈:4:Fibonacci博弈:5:sg函数: 首先介绍博弈论问题有如下几个特点 1:博弈模型为两人轮流决策的博弈.并且两人都使用最优策略来取得胜利. 两个玩家,都会采取最优的决策,那么如果存在一个局面为必胜局面,某玩家位于此局面.只要自己无失误,则必胜.那么同样又一个局面为必败局面,某玩家位于此局面.只要对手无失误,则必败. 那也就是说,针对这样的游戏,我们关注点应该在局面上. 2:博弈是有限的.即无论两

取石子问题

取石子问题 有一种很有意思的游戏,就是有物体若干堆,可以是火柴棍或是围棋子等等均可.两个人轮流从堆中取物体若干,规定最后取光物体者取胜.这是我国民间很古老的一个游戏,别看这游戏极其简单,却蕴含着深刻的数学原理.下面我们来分析一下要如何才能够取胜. (一)巴什博奕(Bash Game):只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个.最后取光者得胜. 显然,如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜