LightOJ 1038-Race to 1 Again(概率dp)

题意:

给你一个数n每一步这个数可以变为他的因子,直到这个数变为1,求n变到1的期望步数。

分析:

dp[i],表示i变为1的期望步数,dp[1]=0,dp[n]是答案。

dp[i]=sum(dp[j])/tmp+1;(j是i的因子,tmp是i因子的个数

化简即可

#include <map>
#include <set>
#include <list>
#include <cmath>
#include <queue>
#include <stack>
#include <cstdio>
#include <vector>
#include <string>
#include <cctype>
#include <complex>
#include <cassert>
#include <utility>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
typedef pair<int,int> PII;
typedef long long ll;
#define lson l,m,rt<<1
#define pi acos(-1.0)
#define rson m+1,r,rt<<11
#define All 1,N,1
#define N 100001
#define read freopen("in.txt", "r", stdin)
const ll  INFll = 0x3f3f3f3f3f3f3f3fLL;
const int INF= 0x7ffffff;
const int mod =  1000000007;
double dp[100010];
int n;
void solve(){
    dp[1]=0.0;
    for(int i=2;i<N;++i){
        dp[i]=0.0;
        int tmp=1;
        for(int j=1;j*j<=i;++j){
            if(i%j==0){
                tmp++;
                dp[i]+=dp[j];
                if(j!=(i/j)&&j!=1){
                    tmp++;
                    dp[i]+=dp[i/j];
                }
            }
        }
      dp[i]+=tmp;
      dp[i]/=(tmp-1);
    }
}
int main()
{
    int t,cas=0;
    scanf("%d",&t);
    solve();
    while(t--){
        scanf("%d",&n);
       printf("Case %d: %lf\n",++cas,dp[n]);
    }
return 0;
}
时间: 2024-11-05 13:40:41

LightOJ 1038-Race to 1 Again(概率dp)的相关文章

Lightoj 1038 - Race to 1 Again (概率DP)

题目链接: Lightoj  1038 - Race to 1 Again 题目描述: 给出一个数D,每次可以选择数D的一个因子,用数D除上这个因子得到一个新的数D,为数D变为1的操作次数的期望为多少? 解题思路: 概率DP咯,对于只知道期望是:E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn)的窝,拿这个题目没有一点办法.然后看了讨论版,发现总会有一些神人存在. 求操作次数的期望时,先设定第i个因子给期望的贡献为Ti,那么有:E = (T1 + T2 + T3

LightOJ 1038 - Race to 1 Again 【DP】

题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1038 题意:题目很短,不叙述了. 解法:dp 代码: #include <stdio.h> #include <ctime> #include <math.h> #include <limits.h> #include <complex> #include <string> #include <functio

LightOJ 1038 Race to 1 Again 期望 记忆化dp

题目链接:点击打开链接 1038 - Race to 1 Again PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB Rimi learned a new thing about integers, which is - any positive integer greater than 1 can be divided by its divisors. So, he is now playin

LightOJ 1038 - Race to 1 Again(期望+DP)

题目链接:http://lightoj.com/volume_showproblem.php?problem=1038 题意是:给你一个N (1 ≤ N ≤ 105) 每次N都随机选一个因子d,然后让N=N/d, 求N变成1的次数的期望: 当 N = 2 时 2有两个因子:1,2 E[2] = E[1]/2 + E[2]/2 + 1;因此可以求出E[2]; 当N = 8 时 8有4个因子1 2 4 8; E[8] = E[1]/4 + E[2]/4 + E[4]/4 + E[8]/4+ 1;因此

LightOJ 1038 - Race to 1 Again (给一个数,用这个数的因数除以这个数,直到为1时,求除的次数的期望。)(概率)

题意:http://www.lightoj.com/volume_showproblem.php?problem=1038 题意:给一个数,用这个数的因数除以这个数,直到为1时,求除的次数的期望. 设一个数的约数有M个,E[n] = (E[a[1]]+1)/M+(E[a[2]]+1)/M+...+(E[a[M]]+1)/M 一个数最大的约数是它自己. 则有,E[n] = (E[a[1]]+1)/M+(E[a[2]]+1)/M+...+(E[n]+1)/M (M-1)*E[n]=E[a[1]]+E

LightOJ - 1038 Race to 1 Again 递推+期望

题目大意:给出一个数,要求你按一定的规则将这个数变成1 规则如下,假设该数为D,要求你在[1,D]之间选出D的因子,用D除上这个因子,然后继续按该规则运算,直到该数变成1 问变成1的期望步数是多少 解题思路:递推,设该数为D,有N个因子,分别是1,n1,n2,n3-nn-2,D, 那么选到每个因子的概率都是1/N,除非选到D,不然选到其他因子的话都要多1步,然后再计算D除以该因子的期望 这就能得到公式了,设dp[D]为数D按规则变成1的期望步数 那么dp[D] = 1/N * (dp[D/1]

LightOJ 1038 Race to 1 Again

每次一个数,问不断除以约数,到1的时候,除的个数的期望. 怕超时,打表,递推公式: (n的约数的个数(不含本身))*a[n]=a[n的约数(除了本身)](求和)+约数的个数(包含本身); 用a[8]举个例子: a[8]=1/4*(a[1]+1)+1/4*(a[2]+1)+1/4*(a[4]+1)+1/4*(a[8]+1); 每次约去就让次数加一~ 完美~ #include <iostream>#include <functional>#include <algorithm&g

LightOJ 1065 Island of Survival (概率DP?)

题意:有 t 只老虎,d只鹿,还有一个人,每天都要有两个生物碰面,1.老虎和老虎碰面,两只老虎就会同归于尽 2.老虎和人碰面或者和鹿碰面,老虎都会吃掉对方 3.人和鹿碰面,人可以选择杀或者不杀该鹿4.鹿和鹿碰面,没事问人存活下来的概率 析:最后存活肯定是老虎没了,首先可以用概率dp来解决,dp[i][j] 表示 还剩下 i 考虑, j 只鹿存活的概率是多少. 然后每次分析这几种情况即可. 还有一种思路就是只要考虑老虎没了,只要老虎没了就能存活,只要计算老虎全死完的概率就好,首先如果老虎是奇数,是

LightOJ - 1151概率dp+高斯消元

概率dp+高斯消元 https://vjudge.net/problem/LightOJ-1151 题意:刚开始在1,要走到100,每次走的距离1-6,超过100重来,有一些点可能有传送点,可以传送到前面或后面,那么概率dp没法递推,只能高斯消元 设期望E(x),首先100这个位置的期望E(100)=0,然后可以找出方程, 对于传送点,E(x)=E(go(x)),对于非传送点,E(x)=(E(x+1)+E(x+2)+E(x+3)+E(x+4)+E(x+5)+E(x+6)+6)/cnt(cnt是可