poj 1703(带权并查集)

Find them, Catch them

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 31840   Accepted: 9807

Description

The police office in Tadu City decides to say ends to the chaos, as launch actions to root up the TWO gangs in the city, Gang Dragon and Gang Snake. However, the police first needs to identify which gang a criminal belongs to. The present question is, given two criminals; do they belong to a same clan? You must give your judgment based on incomplete information. (Since the gangsters are always acting secretly.)

Assume N (N <= 10^5) criminals are currently in Tadu City,
numbered from 1 to N. And of course, at least one of them belongs to
Gang Dragon, and the same for Gang Snake. You will be given M (M <=
10^5) messages in sequence, which are in the following two kinds:

1. D [a] [b]

where [a] and [b] are the numbers of two criminals, and they belong to different gangs.

2. A [a] [b]

where [a] and [b] are the numbers of two criminals. This requires you to decide whether a and b belong to a same gang.

Input

The
first line of the input contains a single integer T (1 <= T <=
20), the number of test cases. Then T cases follow. Each test case
begins with a line with two integers N and M, followed by M lines each
containing one message as described above.

Output

For
each message "A [a] [b]" in each case, your program should give the
judgment based on the information got before. The answers might be one
of "In the same gang.", "In different gangs." and "Not sure yet."

Sample Input

1
5 5
A 1 2
D 1 2
A 1 2
D 2 4
A 1 4

Sample Output

Not sure yet.
In different gangs.
In the same gang.

Source

POJ Monthly--2004.07.18

这题自己当时想的时候总是想方设法去区分每个点是属于哪个集团,在第一次遇到D时就随机分两个集团,可是发现这样根本无法继续下去,因为如果出现的两个数字以前都没有出现过的话,怎么也无法确定各自集团的,后来网上看到了很多方法,但我觉得这个是最好的,最简单的思想,保留所有的可能性即可,没必要去纠结谁属于谁,把所有的可能都存储下来,每个点存储a,和a+n,a代表其属于某个集团,a+n属于另外一个集团,按照并查集存储并执行就好了。

 1 #include<iostream>
 2 #include<cstdio>
 3
 4 using namespace std;
 5
 6 int parent[200005];
 7
 8 int Getparent(int x)
 9 {
10     if(x!=parent[x])
11         parent[x] = Getparent(parent[x]);
12     return parent[x];
13 }
14
15 void Union(int x,int y)
16 {
17     int a = Getparent(x),b = Getparent(y);
18     if(a!=b)
19         parent[b] = a;
20 }
21
22 int main()
23 {
24     int t;
25     while(scanf("%d",&t)!=EOF)
26     {
27         while(t--)
28         {
29             int n,m;
30             scanf("%d%d",&n,&m);
31             for(int i=0;i<n+n+1;i++)
32             {
33                 parent[i] = i;
34             }
35             for(int i=0;i<m;i++)
36             {
37                 char s;
38                 int a,b;
39                 getchar();
40                 scanf("%c %d %d",&s,&a,&b);
41                 if(s==‘A‘)
42                 {
43                     if(Getparent(a) == Getparent(b)||Getparent(a+n)==Getparent(b+n))
44                         printf("In the same gang.\n");
45                     else if(Getparent(a) == Getparent(b+n)||Getparent(b) == Getparent(a+n))
46                         printf("In different gangs.\n");
47                     else
48                         printf("Not sure yet.\n");
49                 }
50                 else
51                 {
52                     Union(a,b+n);
53                     Union(a+n,b);
54                 }
55             }
56         }
57     }
58     return 0;
59 }
时间: 2024-10-14 17:49:33

poj 1703(带权并查集)的相关文章

poj 1733(带权并查集)

题意:有n个结点,给出了q个操作,操作是a b string表示结点a到结点b的和是奇数或偶数,输出x(前x个操作都是正确的). 题解:带权并查集经典题,因为结点可能有10,000,000,000个,所以需要离散化,不用的点就不考虑了.因为要a加到b,如果a==b无法找到各自的根节点并判断是否要合并,所以其实是mp[a - 1]到mp[b]并入集合.另外需要注意结点是有顺序的,父亲结点要大于等于子节点,这样判断才不会出错,所以合并时要考虑两个根结点的大小有不同关系式. #include <std

poj 2912(带权并查集)

题意:有n个人玩石头剪刀布的游戏,编号从1到n-1,把所有人分成3组,给每个组分配一个手势(石头.剪子.布),每轮挑出两个人出来进行游戏,这n个人里有一个裁判,他的手势是可以变化的.给出了m轮的游戏结果,a < b表示b赢了a,a = b表示a和b出了同样的手势,问能否找到裁判的编号,是在第几轮发现的. 题解:这题和食物链那个经典带权并查集很像,也可以用0表示父与子是同一种手势,用1表示父大于子,用2表示父小于子.因为裁判的编号不能确定,可以采用枚举的方式,先假定一个人是裁判,然后去掉这个人所有

poj 1182 带权并查集

食物链 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 45303   Accepted: 13213 Description 动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种. 有人用两种说法对这N个动物所构成的食物链关系进行描述: 第一种说法是"1 X Y",表示X和Y是同

poj 1733带权并查集

L - Parity game Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Status Description Now and then you play the following game with your friend. Your friend writes down a sequence consisting of zeroes and ones. You ch

Parity game POJ - 1733 带权并查集

#include<iostream> #include<algorithm> #include<cstdio> using namespace std; const int N=10010<<1; struct node { int l,r,ans; } q[N]; int a[N],fa[N],d[N],n,m,t_n; int get(int x) { if (x==fa[x]) return x; int root=get(fa[x]); d[x]^=

POJ 1703 Find them, Catch them(带权并查集)

传送门 Find them, Catch them Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 42463   Accepted: 13065 Description The police office in Tadu City decides to say ends to the chaos, as launch actions to root up the TWO gangs in the city, Gang D

(中等) POJ 1703 Find them, Catch them,带权并查集。

Description The police office in Tadu City decides to say ends to the chaos, as launch actions to root up the TWO gangs in the city, Gang Dragon and Gang Snake. However, the police first needs to identify which gang a criminal belongs to. The present

POJ 1984 Navigation Nightmare 二维带权并查集

题目来源:POJ 1984 Navigation Nightmare 题意:给你一颗树 k次询问 求2点之间的曼哈顿距离 并且要在只有开始k条边的情况下 思路:按照方向 我是以左上角为根 左上角为原点 dx[i]为i点距离根的x坐标 dy[]是y坐标 这两个可以通过路径压缩求出 只不过是二维而已 #include <cstdio> #include <cstdlib> #include <cstring> using namespace std; const int m

POJ 1988 Cube Stacking (带权并查集)

题目链接:http://poj.org/problem?id=1988 有n个元素,开始每个元素自己 一栈,有两种操作,将含有元素x的栈放在含有y的栈的顶端,合并为一个栈.第二种操作是询问含有x元素下面有多少个元素. 经典的带权并查集,cnt表示包含这个元素的集合中所有元素个数,dis表示这个元素离最上面元素的个数(距离). 看代码领会一下吧. 1 #include <iostream> 2 #include <cstring> 3 #include <cstdio>

POJ 1182 食物链 [并查集 带权并查集 开拓思路]

传送门 P - 食物链 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status Practice POJ 1182 Appoint description:  System Crawler  (2015-01-27) Description 动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物