拓展欧几里得算法求不定方程

对于
        ax+by=gcd(a,b)

这样的方程,可以用扩展欧几里得算法exgcd求出一组通解。

根据欧几里得求gcd:
        gcd(a,b)=gcd(b,a%b)

可得
        bx+(a%b)y=gcd(b,a%b)

根据
      a%b=a−(a/b)∗b

可得
        bx+ay−(a/b)b∗y=gcd(b,a%b)

化简得
        ay+b(x−(a/b)y)=gcd(b,a%b)

       x′=y,y′=(x−(a/b)y)

    ax′+by′=gcd(b,a%b)<=>ax+by=gcd(a,b)

根据

      gcd(a,0)=a

一直递归直到b为0时可得
      ax+by=a

可以得出一组平凡解
          x=1,y=0

所以一直递归下去可以得出一组平凡解,然后再往回带得出ax+by=gcd(a,b)的一组解(x′=y,y′=(x−(a/b)y))

泛化来看不定方程
ax+by=c

只有满足c%gcd(a,b)==0才有解。

求解同余方程可以用费马小定理来求也可以用拓展欧几里得来求
ax≡b mod n <==>ax+ny=b

就转变成了上述形式

费马小定理:a是上能被质数p整除的正整数,则有a^(p-1) ≡ 1(mod p)

推导:a^(p-1) = 1(mod)p = a*a^(p-2)≡1 (mod p) 因此a的逆元为 a^(p-2); 所以对于满足费马小定理的可以直接用快速幂来求

原文地址:https://www.cnblogs.com/Accepting/p/11351578.html

时间: 2024-10-07 05:27:26

拓展欧几里得算法求不定方程的相关文章

[数论]拓展欧几里得算法

欧几里得算法(辗转相除法) 用来求解最大公约数 1 int gcd(int a,int b){ 2 return b ? gcd(b,a%b) : a; 3 } 在 #include<algorithm> 中也可以直接调用 __gcd(a,b) 拓展欧几里得算法 求解不定方程: 引理:存在 x , y 使得 ax+by=gcd(a,b) 设a,b,c为任意整数,若方程ax+by=c的一组解是(x0,y0),则它的任意整数解都可以写成(x0+k*b/gcd(a,b),y0-k*a/gcd(a,b

HDU - 1356 The Balance(拓展欧几里得算法的解空间结构)

题目: Description Ms. Iyo Kiffa-Australis has a balance and only two kinds of weights to measure a dose of medicine. For example, to measure 200mg of aspirin using 300mg weights and 700mg weights, she can put one 700mg weight on the side of the medicin

ACM-欧几里得与拓展欧几里得算法

欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). 递归版算法: 1 int gcd(int a,int b) 2 { 3 if(b==0) 4 return a; 5 return 6 gcd(b,a%b); 7 } 递归优化版: 1 int gcd(int a,int b) 2 { 3 return b ? gcd(b,a%b) : a; 4

拓展欧几里得算法及代码实现

扩展欧几里得算法就是求: ax + by = gcd(a, b) 的一组整数解(x, y) 一.非递归的实现: 首先看a = 60, b = 22的情况: 表格左边是欧几里得算法,右边等式计算ax + by = gcd(a, b)的解 a = 2 × b + 16 16 = a - 2b b = 1 × 16 + 6 6 = b - 1 × 16 = b - 1 × (a - 2b) = -a + 3b 16 = 2 × 6 + 4 4 = 16 - 2 × 6 = (a - 2b) - 2 ×

数学问题——拓展欧几里得算法

一.拓展欧几里得算法 该算法用来解决这样一个问题:给定两个非零整数 a 和 b,求一组整数解 (x,y) ,使得 ax + by = gcd(a,b) 成立,其中 gcd(a,b) 表示 a 和 b 的最大公约数. 递归边界:当 b 为 0 时,此时的 a 就等于 gcd,显然有 a*1+b*0=gcd 成立,此时 x=1,y=0: 递推公式:设当计算 gcd(a,b) 时,有 ax1 + by1 = gcd 成立:而在下一步计算gcd(b,a%b) 时,又有 bx2 + (a%b)y2 = g

如何使用拓展欧几里得算法求解模线性方程组(详解)

式子a≡b(mod n)称为a和b关于模n同余,它的充要条件是a-b是n的整数倍,即a-b=zn(其中z取整数). 而模线性方程组ax≡b(mod n)可以写成ax-b=zn(其中z取整数),移项可得 ax-zn=b,也即二元一次方程ax+by=c的形式,利用拓展欧几里得算法(extgcd)可以求解该方程是否有解及其一组解,并可根据该组解写出解系,进而求出一个特解,比如最小正整数解. 下面给出拓展欧几里得算法的程序. 1 typedef long long LL; 2 void extgcd(L

Sumdiv|同余|约数|拓展欧几里得算法

目录 Sumdiv|同余|约数|拓展欧几里得算法 Problem 分析 约数个数定理部分 约数和定理部分 等比数列部分 题目分析 扩展欧几里得算法部分 Code 呕,我吐了. Sumdiv|同余|约数|拓展欧几里得算法 Problem \[ 求A^{B}的所有约数之和 \ mod \ 9901\left(1\leqslant A,B \leqslant 5*10^{7}\right) \] 分析 约数个数定理部分 定理内容: 对于一个大于1的正整数n可以分解质因数: 则n的正约数个数为: 定理证

对拓展欧几里得算法的一点理解

首先需要明确的一点是:这是一种算法,而非一个证明题. 算法的需求与数学证明题是不一样的,数学证明题要求严谨完整,而算法只需要证明我用到的某个的性质成立即可,相当于是“恰好发现了这一点”. 于是对于拓展欧几里得,我们是从欧几里得算法中发现了一个递推的性质,从而受到启发,产生猜想:可不可以利用递推求出二元一次方程的解? 我们把猜想建立在欧几里得算法之上,利用该算法的递推过程,贯穿该过程来得到想要解决问题的答案. 也就是说,我们仅仅需要证明我们得到的答案是正确的,而并非深刻挖掘欧几里得算法的过程. 拓

欧几里得算法求最大公约数(gcd)

关于欧几里得算法求最大公约数算法, 代码如下: int gcd( int a , int b ) { if( b == 0 ) return a ; else gcd( b , a % b ) ; } 证明: 对于a,b,有a = kb + r  (a , k , b , r 均为整数),其中r = a mod b . 令d为a和b的一个公约数,则d|a,d|b(即a.b都被d整除), 那么 r =a - kb ,两边同时除以d 得 r/d = a/d - kb/d = m (m为整数,因为r也