spark集群安装并集成到hadoop集群

前言

  最近在搞hadoop+spark+python,所以就搭建了一个本地的hadoop环境,基础环境搭建地址hadoop2.7.7 分布式集群安装与配置

  本篇博客主要说明,如果搭建spark集群并集成到hadoop

安装流程

  安装spark需要先安装scala 注意在安装过程中需要对应spark与scala版本, spark 也要跟hadoop对应版本,具体的可以在spark官网下载页面查看

下载sacla并安装

https://www.scala-lang.org/files/archive/scala-2.11.12.tgz
tar zxf scala-2.11.12.tgz

移动并修改权限

chown hduser:hduser -R scala-2.11.11
mv /root/scala-2.11.11 /usr/local/scala

配置环境变量

vim .bashrc
#scala var
export SCALA_HOME=/usr/local/scala
export PATH=$PATH:$SCALA_HOME/bin

安装完成可以通过scala进如交互页面

注意事项

注意:Spark与hadoop版本必须互相匹配,因为Spark会读取Hadoop HDFS 并且必须能在Hadoop YARN执行程序,所以必须要按照我们目前安装的Hadoop版本来选择
笔者这里用的是hadoop2.7.7 所以我选择的是Pre-built for Apache Hadoop 2.7 and later

下载并安装spark

http://mirror.bit.edu.cn/apache/spark/spark-2.3.3/spark-2.3.3-bin-hadoop2.7.tgz
tar zxf spark-2.3.3-bin-hadoop2.7.tgz

移动并修改权限

chown hduser:hduser spark-2.3.3-bin-hadoop2.7
mv spark-2.3.3-bin-hadoop2.7 /usr/local/spark

配置环境变量

vim .bashrc
#spark var
export SPARK_HOME=/usr/local/spark
export PATH=$PATH:$SPARK_HOME/bin

进入spark交互页面

默认是python2.7.x版本,对于当前来说版本比较老,可以修改pyspark来选择其他版本(前提是当前服务器已安装其他版本python)

修改master下的spark-env.sh  #没有这个文件可以cp spark-env.sh.template spark-env.sh
在最后一行添加如下
export PYSPARK_PYTHON=/usr/bin/python3
修改master下的spark bin目录下pyspark
将文本中
    PYSPARK_PYTHON=python
改为
    PYSPARK_PYTHON=python3

#取消INFO信息打印
复制conf目录下的log4j模本文件到log4j.properties
将文本中
    log4j.rootCategory=INFO, console
改为
    log4j.rootCategory=WARN, console

测试与效果图

本地运行spark

pyspark  --master local[4]

    spark 读取本地文件,所有节点都必须存在该文件
    textFile=sc.textFile("file:/usr/local/spark/README.md")
    spark 读取hdfs文件
    textFile2=sc.textFile("hdfs://hadoop-master-001:9000/wordcount/input/LICENSE.txt")

Hadoop YARN运行spark

HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop pyspark --master yarn --deploy-mode client
    textFile = sc.textFile("hdfs://hadoop-master-001:9000/wordcount/input/LICENSE.txt")
    textFile.count()

spark Standalone Cluster运行

编辑spark-env.sh #spark_home/conf
    export SPARK_MASTER=hadoop-master-001            //设置master的ip或域名
    export SPARK_WORKER_CORES=1                        //设置每个worker使用的CPU核心
    export SPARK_WORKER_MEMORY=512m                    //设置每个worker使用的内存
    export SPARK_WORKER_INSTANCES=4                    //设置实例数

将master环境中的spark目录打包并分别远程传输到所有slave节点中.

设置spark Standalone Cluster 服务器(master环境)
    vim /usr/local/spark/conf/slaves  添加ip或域名
    hadoop-data-001
    hadoop-data-002
    hadoop-data-003

启动与关闭

/usr/local/spark/sbin/start-all.sh

/usr/local/spark/sbin/stop-all.sh

pyspark --master spark://hadoop-master-001:7077 --num-executors 1 --total-executor-cores 3 --executor-memory 512m
    textFile = sc.textFile("file:/usr/local/spark/README.md")
    textFile.count()
    注意 当在cluster模式下,如yarn-client或spark standalone 读取本地文件时,因为程序是分不到不同的服务器,所以必须确认所有机器都有该文件,否则会发生错误.
    建议 最好在cluster读取hdfs文件,这样不会出现文件
    text2=sc.textFile("hdfs://hadoop-master-001:9000/wordcount/input/LICENSE.txt")
     text2.count() 

spark web ui

异常处理

hadoop yarn运行pyspark时异常信息:
ERROR SparkContext: Error initializing SparkContext. org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master

解决方式
查看http://hadoop-master-001:8088/cluster/app/ 最新任务点击history 查看信息
"Diagnostics: Container [pid=29708,containerID=container_1563435447194_0007_02_000001] is running beyond virtual memory limits. Current usage: 55.6 MB of 1 GB physical memory used; 2.2 GB of 2.1 GB virtual memory used. Killing container."

修改所有节点的yarn-site.xml,添加如下
    <property>
        <name>yarn.nodemanager.pmem-check-enabled</name>
        <value>false</value>
    </property>
    <property>
        <name>yarn.nodemanager.vmem-check-enabled</name>
        <value>false</value>
    </property>
主节点执行stop-yarn.sh, start-yarn.sh 重启所有节点yarn

原文地址:https://www.cnblogs.com/charles1ee/p/11240158.html

时间: 2024-10-09 23:19:55

spark集群安装并集成到hadoop集群的相关文章

用Docker在一台笔记本电脑上搭建一个具有10个节点7种角色的Hadoop集群(下)-搭建Hadoop集群

上篇:用Docker在一台笔记本电脑上搭建一个具有10个节点7种角色的Hadoop集群(上)-快速上手Docker 上篇介绍了快速上手Docker部分,下面接着介绍搭建Hadoop集群部分. 六.搭建Hadoop伪分布模式 我们先用前面创建的这个容器来搭建Hadoop伪分布模式做测试,测试成功后再搭建完全分布式集群. 1.SSH这个centos容器可以看做是一个非常精简的系统,很多功能没有,需要自己安装.Hadoop需要SSH,但容器没有自带,需要我们安装.①安装SSH # yum -y ins

ubuntu14.04中spark集群安装配置

一. Spark简介 Spark是一个通用的并行计算框架,由UCBerkeley的AMP实验室开发.Spark基于map reduce 算法模式实现的分布式计算,拥有Hadoop MapReduce所具有的优点:但不同于Hadoop MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,节省了磁盘IO耗时,性能比Hadoop更快. 所以,相对来说Hadoop更适合做批处理,而Spark更适合做需要反复迭代的机器学习.下面是我在ubuntu14.04中配置Spark

spark集群安装配置

spark集群安装配置 一. Spark简介 Spark是一个通用的并行计算框架,由UCBerkeley的AMP实验室开发.Spark基于map reduce 算法模式实现的分布式计算,拥有Hadoop MapReduce所具有的优点:但不同于Hadoop MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,节省了磁盘IO耗时,性能比Hadoop更快. 所以,相对来说Hadoop更适合做批处理,而Spark更适合做需要反复迭代的机器学习.下面是我在ubuntu1

CentOS7 通过Ambari安装Hadoop集群

第一次在cnblogs上发表文章,效果肯定不会好,希望各位多包涵. 编写这个文档的背景是月中的时候,部门老大希望我们能够抽时间学习一下Hadoop大数据方面的技术:给我的学习内容是通过Ambari安装Hadoop集群.通过一周左右的学习和实践,整理出现在这篇安装心得. 安装默认使用Root用户,避免权限问题导致不成功. 使用4台虚拟机构建Ambari-Server.Hadoop集群,分配如下: -       一台虚拟机,作为Ambari-Server: Hostname: ambari.ser

Hadoop集群(第2期)_机器信息分布表

1.分布式环境搭建 采用4台安装Linux环境的机器来构建一个小规模的分布式集群. 图1 集群的架构 其中有一台机器是Master节点,即名称节点,另外三台是Slaver节点,即数据节点.这四台机器彼此间通过路由器相连,从而实验相互通信以及数据传输.它们都可以通过路由器访问Internet,实验网页文档的采集. 2.集群机器详细信息 2.1 Master服务器 名称 详细信息 机器名称 Master.Hadoop 机器IP地址 192.168.1.2 最高用户名称(Name) root 最用用户

Hadoop集群(第3期)机器信息分布表

1.分布式环境搭建 采用4台安装Linux环境的机器来构建一个小规模的分布式集群. 图1 集群的架构 其中有一台机器是Master节点,即名称节点,另外三台是Slaver节点,即数据节点.这四台机器彼此间通过路由器相连,从而实验相互通信以及数据传输.它们都可以通过路由器访问Internet,实验网页文档的采集. 2.集群机器详细信息 2.1 Master服务器 名称 详细信息 机器名称 Master.Hadoop 机器IP地址 192.168.1.21 最高用户名称(Name) root 最用用

Hadoop集群大数据平台搭建

Hadoop集群环境搭建配置 前言 Hadoop的搭建分为三种形式:单机模式.伪分布模式.完全分布模式,只要掌握了完全分布模式,也就是集群模式的搭建,剩下的两种模式自然而然就会用了,一般前两种模式一般用在开发或测试环境下,Hadoop最大的优势就是分布式集群计算,所以在生产环境下都是搭建的最后一种模式:完全分布模式. 硬件选择 须知: 分布式环境中一个服务器就是一个节点 节点越多带来的是集群性能的提升 一个Hadoop集群环境中,NameNode,SecondaryNameNode和DataNo

集群配置虚拟主机及部署Hadoop集群碰到的问题

配置集群方案 Ubuntu下的配置apache虚拟主机方案: 对其中的Master节点配置虚拟主机,可以通过Chrome浏览器访问目录. 安装虚拟主机之前,先安装Apache2 sudo apt-get install apache2 再安装php5 sudo apt-get install php5 然后,进入 /etc/apache2/sites-available文件夹,添加”*.conf”文件 往该文件里写入 <VirtualHost *:80> ServerName author.x

深入理解Hadoop集群和网络【转】

http://os.51cto.com/art/201211/364374.htm 本文将着重于讨论Hadoop集群的体系结构和方法,及它如何与网络和服务器基础设施的关系.最开始我们先学习一下Hadoop集群运作的基础原理. 云计算和Hadoop中网络是讨论得相对比较少的领域.本文原文由Dell企业技术专家Brad Hedlund撰写,他曾在思科工作多年,专长是数据中心.云网络等.文章素材基于作者自己的研究.实验和Cloudera的培训资料. 本文将着重于讨论Hadoop集群的体系结构和方法,及