最短路径---迪杰斯特拉算法[图中一个顶点到其他顶点的最短距离]

转自大神:https://www.cnblogs.com/skywang12345/p/3711512.html

是真的牛逼

看大神的吧 舒服点  我注释了点最后代码的部分

迪杰斯特拉算法介绍

迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。 
它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。

基本思想

通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算)。

此外,引进两个集合S和U。S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离)。

初始时,S中只有起点s;U中是除s之外的顶点,并且U中顶点的路径是"起点s到该顶点的路径"。然后,从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 然后,再从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 ... 重复该操作,直到遍历完所有顶点。

操作步骤

(1) 初始时,S只包含起点s;U包含除s外的其他顶点,且U中顶点的距离为"起点s到该顶点的距离"[例如,U中顶点v的距离为(s,v)的长度,然后s和v不相邻,则v的距离为∞]。

(2) 从U中选出"距离最短的顶点k",并将顶点k加入到S中;同时,从U中移除顶点k。

(3) 更新U中各个顶点到起点s的距离。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其它顶点的距离;例如,(s,v)的距离可能大于(s,k)+(k,v)的距离。

(4) 重复步骤(2)和(3),直到遍历完所有顶点。

单纯的看上面的理论可能比较难以理解,下面通过实例来对该算法进行说明。

迪杰斯特拉算法图解

以上图G4为例,来对迪杰斯特拉进行算法演示(以第4个顶点D为起点)。

初始状态:S是已计算出最短路径的顶点集合,U是未计算除最短路径的顶点的集合! 
第1步:将顶点D加入到S中。 
    此时,S={D(0)}, U={A(∞),B(∞),C(3),E(4),F(∞),G(∞)}。     注:C(3)表示C到起点D的距离是3。

第2步:将顶点C加入到S中。 
    上一步操作之后,U中顶点C到起点D的距离最短;因此,将C加入到S中,同时更新U中顶点的距离。以顶点F为例,之前F到D的距离为∞;但是将C加入到S之后,F到D的距离为9=(F,C)+(C,D)。 
    此时,S={D(0),C(3)}, U={A(∞),B(23),E(4),F(9),G(∞)}。

第3步:将顶点E加入到S中。 
    上一步操作之后,U中顶点E到起点D的距离最短;因此,将E加入到S中,同时更新U中顶点的距离。还是以顶点F为例,之前F到D的距离为9;但是将E加入到S之后,F到D的距离为6=(F,E)+(E,D)。 
    此时,S={D(0),C(3),E(4)}, U={A(∞),B(23),F(6),G(12)}。

第4步:将顶点F加入到S中。 
    此时,S={D(0),C(3),E(4),F(6)}, U={A(22),B(13),G(12)}。

第5步:将顶点G加入到S中。 
    此时,S={D(0),C(3),E(4),F(6),G(12)}, U={A(22),B(13)}。

第6步:将顶点B加入到S中。 
    此时,S={D(0),C(3),E(4),F(6),G(12),B(13)}, U={A(22)}。

第7步:将顶点A加入到S中。 
    此时,S={D(0),C(3),E(4),F(6),G(12),B(13),A(22)}。

此时,起点D到各个顶点的最短距离就计算出来了:A(22) B(13) C(3) D(0) E(4) F(6) G(12)

迪杰斯特拉算法的代码说明

以"邻接矩阵"为例对迪杰斯特拉算法进行说明,对于"邻接表"实现的图在后面会给出相应的源码。

1. 基本定义

// 邻接矩阵
typedef struct _graph
{
    char vexs[MAX];       // 顶点集合
    int vexnum;           // 顶点数
    int edgnum;           // 边数
    int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;

// 边的结构体
typedef struct _EdgeData
{
    char start; // 边的起点
    char end;   // 边的终点
    int weight; // 边的权重
}EData;

Graph是邻接矩阵对应的结构体。 
vexs用于保存顶点,vexnum是顶点数,edgnum是边数;matrix则是用于保存矩阵信息的二维数组。例如,matrix[i][j]=1,则表示"顶点i(即vexs[i])"和"顶点j(即vexs[j])"是邻接点;matrix[i][j]=0,则表示它们不是邻接点。 
EData是邻接矩阵边对应的结构体。

2. 迪杰斯特拉算法

 1 /*
 2  * Dijkstra最短路径。
 3  * 即,统计图(G)中"顶点vs"到其它各个顶点的最短路径。
 4  *
 5  * 参数说明:
 6  *        G -- 图
 7  *       vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。
 8  *     prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。
 9  *     dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。
10  */
11 void dijkstra(Graph G, int vs, int prev[], int dist[])
12 {
13     int i,j,k;
14     int min;
15     int tmp;
16     int flag[MAX];      // flag[i]=1表示"顶点vs"到"顶点i"的最短路径已成功获取。
17
18     // 初始化
19     for (i = 0; i < G.vexnum; i++)
20     {
21         flag[i] = 0;              // 顶点i的最短路径还没获取到。
22         prev[i] = 0;              // 顶点i的前驱顶点为0。
23         dist[i] = G.matrix[vs][i];// 顶点i的最短路径为"顶点vs"到"顶点i"的权。
24     }
25
26     // 对"顶点vs"自身进行初始化
27     flag[vs] = 1;
28     dist[vs] = 0;
29
30     // 遍历G.vexnum-1次;每次找出一个顶点的最短路径。
31     for (i = 1; i < G.vexnum; i++)
32     {
33         // 寻找当前最小的路径;
34         // 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。
35         min = INF;
36         for (j = 0; j < G.vexnum; j++)
37         {
38             if (flag[j]==0 && dist[j]<min)
39             {
40                 min = dist[j];
41                 k = j;
42             }
43         }
44         // 标记"顶点k"为已经获取到最短路径
45         flag[k] = 1;
46
47         // 修正当前最短路径和前驱顶点
48         // 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。
49         for (j = 0; j < G.vexnum; j++)
50         {
51             tmp = (G.matrix[k][j]==INF ? INF : (min + G.matrix[k][j])); // 防止溢出
52             if (flag[j] == 0 && (tmp  < dist[j]) )
53             {
54                 dist[j] = tmp;
55                 prev[j] = k;
56             }           /*关于这个tmp 就是新增了一个点,这个点先和周遭的点连一边 判断语句是距离是不是==INF,是的话连不上还是连不上,不是的话,连上再+它距离vs的              距离(已经是最短路径了)==其他点到vs的最短路径通过这个点K之后等于多少,,这是tmp的意义, 再和人点之前的比,看看是否通过新增的点K,              最短路径是否发生了变化,我想到了克鲁斯卡尔算法,那个是求最小生成树的,就是遍历图中所有的点,n-1条边,权值最小*/
57         }
58     }
59
60     // 打印dijkstra最短路径的结果
61     printf("dijkstra(%c): \n", G.vexs[vs]);
62     for (i = 0; i < G.vexnum; i++)
63         printf("  shortest(%c, %c)=%d\n", G.vexs[vs], G.vexs[i], dist[i]);
64 }

原文地址:https://www.cnblogs.com/yundong333/p/11025723.html

时间: 2024-10-12 09:56:49

最短路径---迪杰斯特拉算法[图中一个顶点到其他顶点的最短距离]的相关文章

数据结构图之三(最短路径--迪杰斯特拉算法——转载自i=i++

数据结构图之三(最短路径--迪杰斯特拉算法) [1]最短路径 最短路径?别乱想哈,其实就是字面意思,一个带边值的图中从某一个顶点到另外一个顶点的最短路径. 官方定义:对于内网图而言,最短路径是指两顶点之间经过的边上权值之和最小的路径. 并且我们称路径上的第一个顶点为源点,最后一个顶点为终点. 由于非内网图没有边上的权值,所谓的最短路径其实是指两顶点之间经过的边数最少的路径. 别废话了!整点实际的哈,你能很快计算出下图中由源点V0到终点V8的最短路径吗? [2]迪杰斯特拉算法 迪杰斯特拉算法是按路

[从今天开始修炼数据结构]图的最短路径 —— 迪杰斯特拉算法和弗洛伊德算法的详解与Java实现

在网图和非网图中,最短路径的含义不同.非网图中边上没有权值,所谓的最短路径,其实就是两顶点之间经过的边数最少的路径:而对于网图来说,最短路径,是指两顶点之间经过的边上权值之和最少的路径,我们称路径上第一个顶点是源点,最后一个顶点是终点. 我们讲解两种求最短路径的算法.第一种,从某个源点到其余各顶点的最短路径问题. 1,迪杰斯特拉(Dijkstra)算法 迪杰斯特拉算法是一个按路径长度递增的次序产生最短路径的算法,每次找到一个距离V0最短的点,不断将这个点的邻接点加入判断,更新新加入的点到V0的距

最短路径 - 迪杰斯特拉算法

和 普利姆算法 思想有点像 还是搞不懂到底p数组到底有什么用 #include<cstdio> #include<cstring> #include<cstdlib> #define MAXVEX 9 #define INFINITY 655 typedef struct { char vexs[MAXVEX]; int matirx[MAXVEX][MAXVEX]; int numVextexes,numEdges; }MGraph; void ShortestPat

数据结构之最短路径(1) [迪杰斯特拉算法]

迪杰斯特拉算法介绍: 迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径. 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止. 基本思想: 通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算). 此外,引进两个集合S和U.S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离). 初始时,S中只有起点s:U中是除s之外的顶点,并且

普里姆算法,克鲁斯卡尔算法,迪杰斯特拉算法,弗洛里德算法

做数据结构的课程设计顺便总结一下这四大算法,本人小白学生一枚, 如果总结的有什么错误,希望能够告知指正 普里姆算法如图所示prim 找出最短的边,再以这条边构成的整体去寻找与之相邻的边,直至连接所有顶点,生成最小生成树,时间复杂度为O(n2) 克鲁斯卡尔算法如图所示kruskal 克鲁斯卡尔算法,假设连通网N=(N,{E}),则令最小生成树的初始状态为只有n个顶点而无边的非连通图T=(V,{}),图中每个顶点 自成一个连通分量.在E中选择代价最小的边,若该边依附的定顶点落在T中不同的连通分量上,

图(最短路径算法————迪杰斯特拉算法和弗洛伊德算法).RP

文转:http://blog.csdn.net/zxq2574043697/article/details/9451887 一: 最短路径算法 1. 迪杰斯特拉算法 2. 弗洛伊德算法 二: 1. 迪杰斯特拉算法 求从源点到其余各点的最短路径 依最短路径的长度递增的次序求得各条路径 路径长度最短的最短路径的特点: 在这条路径上,必定只含一条弧,并且这条弧的权值最小. 下一条路径长度次短的最短路径的特点: 它只可能有两种情况:或是直接从源点到该点(只含一条弧):或者是从源点经过顶点v1,再到达该顶

数据结构之单源最短路径(迪杰斯特拉算法)-(九)

最开始接触最短路径是在数据结构中图的那个章节中.运用到实际中就是我在大三参加的一次美赛中,解决中国的水资源问题.所谓单源最短路径,就是一个起点到图中其他节点的最短路径,这是一个贪心算法. 迪杰斯特拉算法原理(百科): 按路径长度递增次序产生算法: 把顶点集合V分成两组: (1)S:已求出的顶点的集合(初始时只含有源点V0) (2)V-S=T:尚未确定的顶点集合 将T中顶点按递增的次序加入到S中,保证: (1)从源点V0到S中其他各顶点的长度都不大于从V0到T中任何顶点的最短路径长度 (2)每个顶

算法-迪杰斯特拉算法(dijkstra)-最短路径

迪杰斯特拉算法(dijkstra)-最短路径 简介: 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 算法思想: 设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中

最短路径之迪杰斯特拉算法(Dijkstra)

1.迪杰斯特拉(dijkstra)算法简介 Dijkstra算法是由E.W.Dijkstra于1959年提出,又叫迪杰斯特拉算法,它应用了贪心算法模式, 是目前公认的最好的求解最短路径的方法.算法解决的是有向图中单个源点到其他顶点的最短 路径问题,其主要特点是每次迭代时选择的下一个顶点是标记点之外距离源点最近的顶点.但 由于dijkstra算法主要计算从源点到其他所有点的最短路径,所以算法的效率较低. 2.dijkstra算法基本过程 假设路网中每一个节点都有标号 是从出发点s到点t的最短路径长