参考文档
https://blog.csdn.net/nwpushuai/article/details/79935740
https://blog.csdn.net/qq_43030766/article/details/91513501
https://blog.csdn.net/zhqh100/article/details/77646497
https://www.cnblogs.com/zixuan-L/p/11023051.html
https://blog.csdn.net/huangfei711/article/details/79230446
https://www.cnblogs.com/yjlch1016/p/8641910.html
硬件环境
CPU I7-7700,8M,3.6GHZ,4核
内存 DDR4 16G
硬盘 SSD 500G
系统 Ubuntu 16.04 Desktop版(需要用到图像界面)
显卡 NVDIA GeForce GTX1050Ti 4G
系统环境
1.双网卡绑定
[email protected]:~# cat /etc/modules
# /etc/modules: kernel modules to load at boot time.
#
# This file contains the names of kernel modules that should be loaded
# at boot time, one per line. Lines beginning with "#" are ignored.
bonding mode=0 miimon=100
[email protected]:/etc/network# cat /etc/network/interfaces
auto bond0
iface bond0 inet static
address 172.30.10.249
netmask 255.255.255.0
gateway 172.30.10.254
post-up ifenslave bond0 enp2s0 enp3s0
pre-down ifenslave -d bond0 enp2s0 enp3s0
开机启动放在rc.local里面
[email protected]:/etc/network# modprobe bonding
关闭网卡管理会与bonding冲突
[email protected]:/etc/network# systemctl disable network-manager.service
2.设置apt-list源
[email protected]:~# cat /etc/apt/sources.list
deb http://mirrors.163.com/ubuntu/ xenial main restricted universe multiverse
deb http://mirrors.163.com/ubuntu/ xenial-security main restricted universe multiverse
deb http://mirrors.163.com/ubuntu/ xenial-updates main restricted universe multiverse
deb http://mirrors.163.com/ubuntu/ xenial-proposed main restricted universe multiverse
deb http://mirrors.163.com/ubuntu/ xenial-backports main restricted universe multiverse
deb-src http://mirrors.163.com/ubuntu/ xenial main restricted universe multiverse
deb-src http://mirrors.163.com/ubuntu/ xenial-security main restricted universe multiverse
deb-src http://mirrors.163.com/ubuntu/ xenial-updates main restricted universe multiverse
deb-src http://mirrors.163.com/ubuntu/ xenial-proposed main restricted universe multiverse
deb-src http://mirrors.163.com/ubuntu/ xenial-backports main restricted universe multiverse
3.默认语言设置
[email protected]:~# cat /etc/default/locale
# File generated by update-locale
# LANG="zh_CN.UTF-8"
# LANGUAGE="zh_CN:zh"
LANG="en_US.UTF-8"
LANGUAGE="en_US:en"
二、安装Nvidia GTX 1050TI驱动
1.禁用系统默认自带nvidia驱动
[email protected]:~# lsmod | grep nouveau
nouveau 1724416 1
mxm_wmi 16384 1 nouveau
wmi 24576 2 mxm_wmi,nouveau
i2c_algo_bit 16384 1 nouveau
ttm 106496 1 nouveau
drm_kms_helper 172032 1 nouveau
drm 401408 4 drm_kms_helper,ttm,nouveau
video 45056 1 nouveau
2.禁用模块
[email protected]:~# vim /etc/modprobe.d/blacklist.conf
在文件末尾添加如下几行:
blacklist vga16fb?
blacklist nouveau?
blacklist rivafb?
blacklist rivatv?
blacklist nvidiafb
3.更新内核
[email protected]:~# update-initramfs -u
update-initramfs: Generating /boot/initrd.img-4.15.0-45-generic
4.重启
[email protected]:~# reboot
5.上传cudnn_cudn.zip包
[email protected]:~# rz
[email protected]:~# ls
cudnn_cuda cudnn_cuda.zip
[email protected]:~# cd cudnn_cuda/
[email protected]:~/cudnn_cuda# ls
cuda_10.0.130.1_linux.run libcudnn7-dev_7.6.3.30-1+cuda10.0_amd64.deb
cuda_10.0.130_410.48_linux.run libcudnn7-doc_7.6.3.30-1+cuda10.0_amd64.deb
libcudnn7_7.6.3.30-1+cuda10.0_amd64.deb NVIDIA-Linux-x86_64-435.21.run
6.安装驱动
[email protected]:~/cudnn_cuda# systemctl stop lightdm.service
[email protected]:~/cudnn_cuda# sh NVIDIA-Linux-x86_64-435.21.run
Verifying archive integrity... OK
Uncompressing NVIDIA Accelerated Graphics Driver for Linux-x86_64 435.21........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
[email protected]:~/cudnn_cuda# lsmod | grep nvi
nvidia_drm 45056 0
nvidia_modeset 1118208 1 nvidia_drm
nvidia 19472384 1 nvidia_modeset
drm_kms_helper 172032 1 nvidia_drm
drm 401408 3 drm_kms_helper,nvidia_drm
ipmi_msghandler 53248 2 ipmi_devintf,nvidia
三.安装cuda 10.1
[email protected]:~/cudnn_cuda# sh cuda_10.0.130_410.48_linux.run
Do you accept the previously read EULA?
accept/decline/quit: accept
Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 410.48?
(y)es/(n)o/(q)uit: n
Install the CUDA 10.0 Toolkit?
(y)es/(n)o/(q)uit: y
Enter Toolkit Location
[ default is /usr/local/cuda-10.0 ]:
Do you want to install a symbolic link at /usr/local/cuda?
(y)es/(n)o/(q)uit: y
Install the CUDA 10.0 Samples?
(y)es/(n)o/(q)uit: y
Enter CUDA Samples Location
[ default is /root ]:
Installing the CUDA Toolkit in /usr/local/cuda-10.0 ...
Installing the CUDA Toolkit in /usr/local/cuda-10.0 ...
Missing recommended library: libGLU.so
Missing recommended library: libX11.so
Missing recommended library: libXi.so
Missing recommended library: libXmu.so
Installing the CUDA Samples in /root ...
Copying samples to /root/NVIDIA_CUDA-10.0_Samples now...
Finished copying samples.
===========
= Summary =
===========
Driver: Not Selected
Toolkit: Installed in /usr/local/cuda-10.0
Samples: Installed in /root, but missing recommended libraries
Please make sure that
- PATH includes /usr/local/cuda-10.0/bin
- LD_LIBRARY_PATH includes /usr/local/cuda-10.0/lib64, or, add /usr/local/cuda-10.0/lib64 to /etc/ld.so.conf and run ldconfig as root
To uninstall the CUDA Toolkit, run the uninstall script in /usr/local/cuda-10.0/bin
Please see CUDA_Installation_Guide_Linux.pdf in /usr/local/cuda-10.0/doc/pdf for detailed information on setting up CUDA.
***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 384.00 is required for CUDA 10.0 functionality to work.
To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:
sudo <CudaInstaller>.run -silent -driver
Logfile is /tmp/cuda_install_9752.log
[email protected]:~/cudnn_cuda# vim /etc/ld.so.conf
[email protected]:~/cudnn_cuda# ldconfig
[email protected]:~# cat /etc/profile
export PATH=/usr/local/cuda-10.0/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
export CUDA_HOME=/usr/local/cuda
[email protected]:~# nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2018 NVIDIA Corporation
Built on Sat_Aug_25_21:08:01_CDT_2018
Cuda compilation tools, release 10.0, V10.0.130
四.安装cuDNN 7.6
[email protected]:~/cudnn_cuda# dpkg -i libcudnn7_7.6.3.30-1+cuda10.0_amd64.deb
Selecting previously unselected package libcudnn7.
(Reading database ... 184057 files and directories currently installed.)
Preparing to unpack libcudnn7_7.6.3.30-1+cuda10.0_amd64.deb ...
Unpacking libcudnn7 (7.6.3.30-1+cuda10.0) ...
Setting up libcudnn7 (7.6.3.30-1+cuda10.0) ...
Processing triggers for libc-bin (2.23-0ubuntu11) ...
[email protected]:~/cudnn_cuda# dpkg -i libcudnn7-dev_7.6.3.30-1+cuda10.0_amd64.deb
Selecting previously unselected package libcudnn7-dev.
(Reading database ... 184063 files and directories currently installed.)
Preparing to unpack libcudnn7-dev_7.6.3.30-1+cuda10.0_amd64.deb ...
Unpacking libcudnn7-dev (7.6.3.30-1+cuda10.0) ...
Setting up libcudnn7-dev (7.6.3.30-1+cuda10.0) ...
update-alternatives: using /usr/include/x86_64-linux-gnu/cudnn_v7.h to provide /usr/include/cudnn.h (libcudnn) in auto mode
[email protected]:~/cudnn_cuda# dpkg -i libcudnn7-doc_7.6.3.30-1+cuda10.0_amd64.deb
Selecting previously unselected package libcudnn7-doc.
(Reading database ... 184069 files and directories currently installed.)
Preparing to unpack libcudnn7-doc_7.6.3.30-1+cuda10.0_amd64.deb ...
Unpacking libcudnn7-doc (7.6.3.30-1+cuda10.0) ...
Setting up libcudnn7-doc (7.6.3.30-1+cuda10.0) ...
[email protected]:~/cudnn_cuda# cp /usr/include/cudnn.h /usr/local/cuda/include
[email protected]:~/cudnn_cuda# cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
#define CUDNN_MAJOR 7
#define CUDNN_MINOR 6
#define CUDNN_PATCHLEVEL 3
--
#define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)
#include "driver_types.h"
五.测试GPU效果
1.安装python3.6
[email protected]:~# add-apt-repository ppa:jonathonf/python-3.6
A plain backport of *just* Python 3.6. System extensions/Python libraries may or may not work.
Don‘t remove Python 3.5 from your system - it will break.
More info: https://launchpad.net/~jonathonf/+archive/ubuntu/python-3.6
Press [ENTER] to continue or ctrl-c to cancel adding it
gpg: keyring `/tmp/tmpec5st1dk/secring.gpg‘ created
gpg: keyring `/tmp/tmpec5st1dk/pubring.gpg‘ created
gpg: requesting key F06FC659 from hkp server keyserver.ubuntu.com
gpg: /tmp/tmpec5st1dk/trustdb.gpg: trustdb created
gpg: key F06FC659: public key "Launchpad PPA for J Fernyhough" imported
gpg: Total number processed: 1
gpg: imported: 1 (RSA: 1)
OK
[email protected]:~# update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.5 1
update-alternatives: using /usr/bin/python3.5 to provide /usr/bin/python3 (python3) in auto mode
[email protected]:~# update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.6 2
update-alternatives: using /usr/bin/python3.6 to provide /usr/bin/python3 (python3) in auto mode
[email protected]:~# update-alternatives --install /usr/bin/python python /usr/bin/python2 100
update-alternatives: using /usr/bin/python2 to provide /usr/bin/python (python) in auto mode
[email protected]:~# update-alternatives --install /usr/bin/python python /usr/bin/python3 150
update-alternatives: using /usr/bin/python3 to provide /usr/bin/python (python) in auto mode
[email protected]:~# python3
Python 3.6.8 (default, May 7 2019, 14:58:50)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>
2.安装pip3
[email protected]:~# apt install python3-pip
3.安装tensorflow
[email protected]:~# pip3 install tensorflow-gpu==1.13.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
Collecting tensorflow-gpu==1.13.1
4.测试gpu
测试python语句
import numpy
import tensorflow as tf
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name=‘a‘)
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name=‘b‘)
c = tf.matmul(a, b)
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
print(sess.run(c))
[email protected]:~# python3
Python 3.6.8 (default, May 7 2019, 14:58:50)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy
ement=True))
print(sess.run(c))>>> import tensorflow as tf
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/dtypes.py:526: FutureWarning: Passing (type, 1) or ‘1type‘ as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / ‘(1,)type‘.
_np_qint8 = np.dtype([("qint8", np.int8, 1)])
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/dtypes.py:527: FutureWarning: Passing (type, 1) or ‘1type‘ as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / ‘(1,)type‘.
_np_quint8 = np.dtype([("quint8", np.uint8, 1)])
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/dtypes.py:528: FutureWarning: Passing (type, 1) or ‘1type‘ as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / ‘(1,)type‘.
_np_qint16 = np.dtype([("qint16", np.int16, 1)])
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/dtypes.py:529: FutureWarning: Passing (type, 1) or ‘1type‘ as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / ‘(1,)type‘.
_np_quint16 = np.dtype([("quint16", np.uint16, 1)])
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/dtypes.py:530: FutureWarning: Passing (type, 1) or ‘1type‘ as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / ‘(1,)type‘.
_np_qint32 = np.dtype([("qint32", np.int32, 1)])
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/dtypes.py:535: FutureWarning: Passing (type, 1) or ‘1type‘ as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / ‘(1,)type‘.
np_resource = np.dtype([("resource", np.ubyte, 1)])
>>> a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name=‘a‘)
>>> b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name=‘b‘)
>>> c = tf.matmul(a, b)
>>> sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
2019-09-14 12:27:18.309361: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2019-09-14 12:27:18.360212: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:998] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-09-14 12:27:18.360498: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x3bb3a20 executing computations on platform CUDA. Devices:
2019-09-14 12:27:18.360512: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): GeForce GTX 1050 Ti, Compute Capability 6.1
2019-09-14 12:27:18.379184: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 3600000000 Hz
2019-09-14 12:27:18.380446: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x3ccb2f0 executing computations on platform Host. Devices:
2019-09-14 12:27:18.380503: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): <undefined>, <undefined>
2019-09-14 12:27:18.380792: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1433] Found device 0 with properties:
name: GeForce GTX 1050 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.392
pciBusID: 0000:01:00.0
totalMemory: 3.94GiB freeMemory: 3.66GiB
2019-09-14 12:27:18.380852: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: 0
2019-09-14 12:27:18.382037: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-09-14 12:27:18.382075: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990] 0
2019-09-14 12:27:18.382090: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 0: N
2019-09-14 12:27:18.382242: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 3452 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1050 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1)
Device mapping:
/job:localhost/replica:0/task:0/device:XLA_GPU:0 -> device: XLA_GPU device
/job:localhost/replica:0/task:0/device:XLA_CPU:0 -> device: XLA_CPU device
/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: GeForce GTX 1050 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1
2019-09-14 12:27:18.384493: I tensorflow/core/common_runtime/direct_session.cc:317] Device mapping:
/job:localhost/replica:0/task:0/device:XLA_GPU:0 -> device: XLA_GPU device
/job:localhost/replica:0/task:0/device:XLA_CPU:0 -> device: XLA_CPU device
/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: GeForce GTX 1050 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1
>>> print(sess.run(c))
MatMul: (MatMul): /job:localhost/replica:0/task:0/device:GPU:0
2019-09-14 12:27:20.118473: I tensorflow/core/common_runtime/placer.cc:1059] MatMul: (MatMul)/job:localhost/replica:0/task:0/device:GPU:0
a: (Const): /job:localhost/replica:0/task:0/device:GPU:0
2019-09-14 12:27:20.118492: I tensorflow/core/common_runtime/placer.cc:1059] a: (Const)/job:localhost/replica:0/task:0/device:GPU:0
b: (Const): /job:localhost/replica:0/task:0/device:GPU:0
2019-09-14 12:27:20.118502: I tensorflow/core/common_runtime/placer.cc:1059] b: (Const)/job:localhost/replica:0/task:0/device:GPU:0
[[22. 28.]
[49. 64.]]
>>>
5.查看GPU使用情况
[email protected]:~# nvidia-smi
Fri Sep 6 19:42:42 2019
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 9558 C python3 3865MiB |
| 0 12510 G /usr/lib/xorg/Xorg 39MiB |
| 0 12608 G gnome-shell 38MiB |
+-----------------------------------------------------------------------------+
Fri Sep 6 00:22:27 2019
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 435.21 Driver Version: 435.21 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 105... Off | 00000000:01:00.0 On | N/A |
| 31% 62C P0 N/A / 80W | 3955MiB / 4038MiB | 97% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 9558 C python3 3865MiB |
| 0 12510 G /usr/lib/xorg/Xorg 39MiB |
| 0 12608 G gnome-shell 38MiB |
+-----------------------------------------------------------------------------+
原文地址:https://blog.51cto.com/jerrymin/2439951