布隆过滤器简述及应用

一、布隆过滤器

1、维基百科

  布隆过滤器(Bloom Filter)是1970年由布隆提出的。

  实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。

  优点是不需要存储 key,节省空间,空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。

2、原理概念

  如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定。

  链表、树、散列表(哈希表)等等数据结构都是这种思路,但是随着集合中元素的增加,需要的存储空间越来越大;同时检索速度也越来越慢,检索时间复杂度分别是O(n)、O(log n)、O(1)。

  布隆过滤器的原理是,当一个元素被加入集合时,通过 K 个散列函数将这个元素映射成一个位数组(Bit array)中的 K 个点,把它们置为 1 。检索时,只要看看这些点是不是都是1就知道元素是否在集合中;如果这些点有任何一个 0,则被检元素一定不在;如果都是1,则被检元素很可能在(之所以说“可能”是误差的存在)。

3、自我理解

  直观的说,Bloom 算法类似于一个 HashSet(通过哈希算法得出元素的哈希地址,通过对比哈希地址就可以确定两个对象是否为同一个地址),用来判断某个元素(key)是否在某个集合中。

  和一般的 HashSet 不同的是,Bloom Filter 算法无需存储 key 的值,对于每个 key,只需要 k 个比特位,每个存储一个标志,用来判断 key 是否在集合中。

二、算法解析

1、BloomFilter 流程

  1. 首先需要 k 个 hash 函数,每个函数可以把 key 散列成为 1 个整数;

  2. 初始化时,需要一个长度为 n 比特的数组,每个比特位初始化为 0;

  3. 某个 key 加入集合时,用 k 个 hash 函数计算出 k 个散列值,并把数组中对应的比特位置为 1;

  4. 判断某个 key 是否在集合时,用 k 个 hash 函数计算出 k 个散列值,并查询数组中对应的比特位,如果所有的比特位都是1,认为在集合中。

2、关于哈希冲突

  假设 Hash 函数是良好的,如果我们的位阵列长度为 m 个点,那么如果我们想将冲突率降低到例如 1%, 这个散列表就只能容纳 m/100个元素。显然这就不叫空间效率了(Space-efficient)了。解决方法,就是使用多个 Hash,如果它们有一个说元素不在集合中,那肯定就不在。如果它们都说在,虽然也有一定可能性它们都在说谎,不过直觉上判断这种事情的概率是比较低的。--- 如上 BloomFilter 流程

  一个 Bloom Filter 是基于一个 m 位的位向量(b1,…bm),这些位向量的初始值为0。另外,还有一系列的hash函数(h1,…,hk),这些 hash 函数的值域属于1~m。

3、算法实现示意图

  一个 bloom filter 插入 {x, y, z},并判断某个值 w 是否在该数据集:

  解析:m=18,k=3;插入 x 是,三个 hash 函数分别得到蓝线对应的三个值,并将对应的位向量改为1,插入 y,z 时,类似的,分别将红线,紫线对应的位向量改为1。查找时,当查找 x 时,三个 hash 值对应的位向量都为1,因此判断 x 在此数据集中。y,z 也是如此。但是查找 w 时,w 有个 hash 值对应的位向量为0,因此可以判断不在此集合中。但是,假如 w 的最后那个 hash 值是1,这时就会认为 w 在此集合中,而事实上,w 可能不在此集合中,因此可能出现误报。显然的,插入数据越多,1的位数越多,误报的概率越大。

  Wiki的Bloom Filter词条有关于误报的概率的详细分析:Probability of false positives。从分析可以看出,当 k 比较大时,误报概率还是比较小的。

三、BloomFilter 的应用

1、一些应用场景

  黑名单:比如邮件黑名单过滤器,判断邮件地址是否在黑名单中。

  排序(仅限于 BitSet) 。

  网络爬虫:判断某个URL是否已经被爬取过。

  K-V系统快速判断某个key是否存在:典型的例子有 Hbase,Hbase 的每个 Region 中都包含一个 BloomFilter,用于在查询时快速判断某个 key 在该 region 中是否存在,如果不存在,直接返回,节省掉后续的查询。

2、一致性校验(ConsistencyCheck)

  Background:Database migration(SQL Server migrate to MySQL),迁移后的数据一致性校验。

  Design:使用 BloomFilter 进行 ConsistencyCheck

  Process:

    ① Migrate

    ② Hash the MySQL tables to BloomFilter

    ③ Use the SQL Server tables data to check

3、Python Code:

 1 import pymysql
 2 import pymssql
 3 import time
 4 from bloompy import ScalableBloomFilter
 5
 6 def timenow():
 7     timestr = time.localtime(int(time.time()))
 8     now = time.strftime("%Y-%m-%d %H:%M:%S", timestr)
 9     return now
10
11 #configure sql server connect
12 def mssql_conn():
13     conn = pymssql.connect(
14                 server="***",
15                 user="***",
16                 password="***",
17                 database="***")
18     return conn
19
20 #configure mysql connect
21 def mysql_conn():
22     conn = pymysql.connect(
23                 host="***",
24                 port=3306,
25                 user="***",
26                 password="***",
27                 database="***")
28     return conn
29
30 def bloomf():
31     bloom = ScalableBloomFilter(initial_capacity=100, error_rate=0.001, mode=ScalableBloomFilter.LARGE_SET_GROWTH)
32     conn = mysql_conn()
33     cur = conn.cursor()
34     print(‘*** Target table data add to BloomFilter ***\n...‘)
35     try:
36         cur.execute(t_sql)
37         result = cur.fetchone()
38         while result != None:
39             bloom.add(result)
40             result = cur.fetchone()
41     except:
42         print ("Error: unable to fetch data.")
43     finally:
44         print(‘Finished add.\n‘)
45         cur.close()
46         conn.close()
47
48     print(timenow(),‘\n*** Compare source to target data ***\n...‘)
49     conn = mssql_conn()
50     cur = conn.cursor()
51     try:
52         cur.execute(s_sql)
53         num = 0
54         result = cur.fetchone()
55         while result != None:
56             if result in bloom:
57                 pass
58             else:
59                 print(‘{} is not in the bloom filter,not in Target table {}.‘.format(result,tab))
60                 num += 1
61             result = cur.fetchone()
62         if num == 0:
63
64             print(‘Result: {} ==> Target table data matches source table data.‘.format(tab))
65         else:
66             print(‘\nResult: Need to compare output to repair data.‘)
67     except:
68         print ("Error: unable to fetch data.")
69     finally:
70         cur.close()
71         conn.close()
72
73
74 if __name__ == ‘__main__‘:
75     tab  =‘***‘
76     t_sql=‘select concat(***, ***, ***, UpdateDate) from ***;‘
77     s_sql="select convert(varchar(20),***)+convert(varchar(20),***)+convert(varchar(20),***,20)+convert(varchar(25),UpdateDate,21)+‘000‘ from ***"
78     print(‘#Start:‘,timenow(),‘\n‘)
79     bloomf()
80     print(‘\n#End:‘,timenow())

原文地址:https://www.cnblogs.com/ExMan/p/11373838.html

时间: 2024-10-13 23:18:22

布隆过滤器简述及应用的相关文章

布隆过滤器(Bloom Filter)的原理和实现

什么情况下需要布隆过滤器? 先来看几个比较常见的例子 字处理软件中,需要检查一个英语单词是否拼写正确 在 FBI,一个嫌疑人的名字是否已经在嫌疑名单上 在网络爬虫里,一个网址是否被访问过 yahoo, gmail等邮箱垃圾邮件过滤功能 这几个例子有一个共同的特点: 如何判断一个元素是否存在一个集合中? 常规思路 数组 链表 树.平衡二叉树.Trie Map (红黑树) 哈希表 虽然上面描述的这几种数据结构配合常见的排序.二分搜索可以快速高效的处理绝大部分判断元素是否存在集合中的需求.但是当集合里

[转载] 布隆过滤器(Bloom Filter)详解

转载自http://www.cnblogs.com/haippy/archive/2012/07/13/2590351.html   布隆过滤器[1](Bloom Filter)是由布隆(Burton Howard Bloom)在1970年提出的.它实际上是由一个很长的二进制向量和一系列随机映射函数组成,布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率(假正例False positives,即Bloom Filter报告某一

布隆过滤器的简易实现

布隆过滤器(Bloom Filter): 是由布隆(Burton Howard Bloom)提出的.它实际上是由一个很长的二进制向量和一系列随机映射函数组成,布隆过滤器用于检索一个元素是否在一个集合中.底层是利用哈希表来实现的,它可以通过一个Hash函数将一个元素映射成一个位阵列(Bit Array)中的一个点.这样一来,我们只要看看这个点是不是 1 就知道可以集合中有没有它了.这就是布隆过滤器的基本思想. 优点:空间效率和查询时间相比于其他数据结构有很大的优势 缺点:有一定的误识别率,删除困难

网络爬虫:URL去重策略之布隆过滤器(BloomFilter)的使用

前言: 最近被网络爬虫中的去重策略所困扰.使用一些其他的"理想"的去重策略,不过在运行过程中总是会不太听话.不过当我发现了BloomFilter这个东西的时候,的确,这里是我目前找到的最靠谱的一种方法. 如果,你说URL去重嘛,有什么难的.那么你可以看完下面的一些问题再说这句话. 关于BloomFilter: Bloom filter 是由 Howard Bloom 在 1970 年提出的二进制向量数据结构,它具有很好的空间和时间效率,被用来检测一个元素是不是集合中的一个成员.如果检测

Bloom Filter(布隆过滤器)

布隆过滤器(英语:Bloom Filter)是1970年由布隆提出的.它实际上是一个很长的二进制矢量和一系列随机映射函数.布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难. 如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定.链表.树.散列表(又叫哈希表,Hash table)等等数据结构都是这种思路.但是随着集合中元素的增加,我们需要的存储空间越来越大.同时检索速度也越来

布隆过滤器(Bloom Filter)

在大数据的实时处理系统中,累加型的计算(PV统计)可以使用累加器解决:非累加型的计算(UV统计),需要损失一定准确率来保证执行效率,对最终值进行估算.其中一种估算方法便是布隆过滤器. BF是一种二进制向量数据结构,拥有很高的空间和时间效率.其基本原理是使用长度为m的位数组M存储集合信息,同时使用k个相互独立的哈希函数K将数据集D映射到位数组空间.通过K的映射,D的每个元素在M中都占有k位,对应的位置置1.计算是个元素是否在D中时,通过K计算映射位置,k个位置全部为1时,表示该元素已存在.否则,表

第三百五十八节,Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中

第三百五十八节,Python分布式爬虫打造搜索引擎Scrapy精讲-将bloomfilter(布隆过滤器)集成到scrapy-redis中,判断URL是否重复 布隆过滤器(Bloom Filter)详解 基本概念 如果想判断一个元素是不是在一个集合里,一般想到的是将所有元素保存起来,然后通过比较确定.链表,树等等数据结构都是这种思路. 但是随着集合中元素的增加,我们需要的存储空间越来越大,检索速度也越来越慢.不过世界上还有一种叫作散列表(又叫哈希表,Hash table)的数据结构.它可以通过一

剖析布隆过滤器

布隆过滤器(Bloom Filter)是由布隆(Burton Howard Bloom)在1970年提出的.它实际上是由一个很长的二进制向量和一系列随机映射函数组成,布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率(假正例False positives,即Bloom Filter报告某一元素存在于某集合中,但是实际上该元素并不在集合中)和删除困难,但是没有识别错误的情形(即假反例False negatives,如果某个元素确

位图与布隆过滤器

给40亿个不重复的无符号整数,没排过序.给一个无符号整数,如何快速判断一个数是否在这40亿个数中.这个问题怎么解决呢? [位图方法]: 位图(BitMap) 是用一个数组中的每个数据的每个二进制位表示一个数是否存在.1表示存在,0表示不存在. 相当于把数组分成很多块的空间,每一块是32个比特位. 原来32个比特位放一个数据,现在一个位就可以放一个数据.16GB/32=0.5GB=512MB. #ifndef __BITMAP_H__#define __BITMAP_H__#include<ios