大数据用到哪些技术?

原地址:https://blog.51cto.com/12306609/2095719

大数据是对海量数据进行存储、计算、统计、分析处理的一系列处理手段,处理的数据量通常是TB级,甚至是PB或EB级的数据,这是传统数据处理手段所无法完成的,其涉及的技术有分布式计算、高并发处理、高可用处理、集群、实时性计算等,汇集了当前IT领域热门流行的IT技术。

想要学好大数据需掌握以下技术:

1. Java编程技术

Java编程技术是大数据学习的基础,Java是一种强类型语言,拥有极高的跨平台能力,可以编写桌面应用程序、Web应用程序、分布式系统和嵌入式系统应用程序等,是大数据工程师最喜欢的编程工具,因此,想学好大数据,掌握Java基础是必不可少的!

2.Linux命令

对于大数据开发通常是在Linux环境下进行的,相比Linux操作系统,Windows操作系统是封闭的操作系统,开源的大数据软件很受限制,因此,想从事大数据开发相关工作,还需掌握Linux基础操作命令。

3. Hadoop

Hadoop是大数据开发的重要框架,其核心是HDFS和MapReduce,HDFS为海量的数据提供了存储,MapReduce为海量的数据提供了计算,因此,需要重点掌握,除此之外,还需要掌握Hadoop集群、Hadoop集群管理、YARN以及Hadoop高级管理等相关技术与操作!

4. Hive

Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行,十分适合数据仓库的统计分析。对于Hive需掌握其安装、应用及高级操作等。

5. Avro与Protobuf

Avro与Protobuf均是数据序列化系统,可以提供丰富的数据结构类型,十分适合做数据存储,还可进行不同语言之间相互通信的数据交换格式,学习大数据,需掌握其具体用法。

6.ZooKeeper

ZooKeeper是Hadoop和Hbase的重要组件,是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组件服务等,在大数据开发中要掌握ZooKeeper的常用命令及功能的实现方法。

7. HBase

HBase是一个分布式的、面向列的开源数据库,它不同于一般的关系数据库,更适合于非结构化数据存储的数据库,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,大数据开发需掌握HBase基础知识、应用、架构以及高级用法等。

8.phoenix

phoenix是用Java编写的基于JDBC API操作HBase的开源SQL引擎,其具有动态列、散列加载、查询服务器、追踪、事务、用户自定义函数、二级索引、命名空间映射、数据收集、行时间戳列、分页查询、跳跃查询、视图以及多租户的特性,大数据开发需掌握其原理和使用方法。

9. Redis

Redis是一个key-value存储系统,其出现很大程度补偿了memcached这类key/value存储的不足,在部分场合可以对关系数据库起到很好的补充作用,它提供了Java,C/C++,C#,PHP,JavaScript,Perl,Object-C,Python,Ruby,Erlang等客户端,使用很方便,大数据开发需掌握Redis的安装、配置及相关使用方法。

10. Flume

Flume是一款高可用、高可靠、分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。大数据开发需掌握其安装、配置以及相关使用方法。

11. SSM

SSM框架是由Spring、SpringMVC、MyBatis三个开源框架整合而成,常作为数据源较简单的web项目的框架。大数据开发需分别掌握Spring、SpringMVC、MyBatis三种框架的同时,再使用SSM进行整合操作。

12.Kafka

Kafka是一种高吞吐量的分布式发布订阅消息系统,其在大数据开发应用上的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理,也是为了通过集群来提供实时的消息。大数据开发需掌握Kafka架构原理及各组件的作用和使用方法及相关功能的实现!

13.Scala

Scala是一门多范式的编程语言,大数据开发重要框架Spark是采用Scala语言设计的,想要学好Spark框架,拥有Scala基础是必不可少的,因此,大数据开发需掌握Scala编程基础知识!

14.Spark

Spark是专为大规模数据处理而设计的快速通用的计算引擎,其提供了一个全面、统一的框架用于管理各种不同性质的数据集和数据源的大数据处理的需求,大数据开发需掌握Spark基础、SparkJob、Spark RDD、spark job部署与资源分配、Spark shuffle、Spark内存管理、Spark广播变量、Spark SQL、Spark Streaming以及Spark ML等相关知识。

15.Azkaban

Azkaban是一个批量工作流任务调度器,可用于在一个工作流内以一个特定的顺序运行一组工作和流程,可以利用Azkaban来完成大数据的任务调度,大数据开发需掌握Azkaban的相关配置及语法规则。

16.Python与数据分析

Python是面向对象的编程语言,拥有丰富的库,使用简单,应用广泛,在大数据领域也有所应用,主要可用于数据采集、数据分析以及数据可视化等,因此,大数据开发需学习一定的Python知识。

原文地址:https://www.cnblogs.com/aabbcc/p/11531508.html

时间: 2024-11-10 17:14:31

大数据用到哪些技术?的相关文章

成都大数据Hadoop与Spark技术培训班

成都大数据Hadoop与Spark技术培训班 中国信息化培训中心特推出了大数据技术架构及应用实战课程培训班,通过专业的大数据Hadoop与Spark技术架构体系与业界真实案例来全面提升大数据工程师.开发设计人员的工作水平,旨在培养专业的大数据Hadoop与Spark技术架构专家,更好地服务于各个行业的大数据项目开发和落地实施. 2015年近期公开课安排:(全国巡回开班) 08月21日——08月23日大连 09月23日——09月25日北京 10月16日——10月18日成都 11月27日——11月2

网易大数据平台的Spark技术实践

网易大数据平台的Spark技术实践 作者 王健宗 网易的实时计算需求 对于大多数的大数据而言,实时性是其所应具备的重要属性,信息的到达和获取应满足实时性的要求,而信息的价值需在其到达那刻展现才能利益最大化,例如电商网站,网站推荐系统期望能实时根据顾客的点击行为分析其购买意愿,做到精准营销. 实时计算指针对只读(Read Only)数据进行即时数据的获取和计算,也可以成为在线计算,在线计算的实时级别分为三类:Real-Time(msec/sec级).Near Real-Time(min/hours

大数据用到的技术

转自:http://www.jdon.com/bigdata/whatisbigdata.html ---------- 你可能会问什么是大数据,它几乎是每一个业务领域的最新趋势?难道仅仅是炒作? 事实上"大数据"是一个非常简单的术语 - 它只是说 - 一个非常大的数据集.有多大?确切答案是"你能想象的一样大"! 这个数据集为何能如此大规模?因为数据可能来自无处不在,无时不变的: RFID传感器,流量数据,用于收集气象信息传感器,手机的GPRS包,社交媒体网站的发布

实用干货!大数据入门的常用技术栈全在这里了

简介: 大数据自 2009 年走向人们的视野,亦如所有新技术的发展,经历了一波炒作后,由风口回归理性发展.我们可以看到,随着 IOT 技术的发展和成熟,以及 5G 业务的全面铺开,数据规模还将持续增长.新晋技术风口 AI.区块链.RPA 的发展也都离不开大数据技术.大数据技术将作为一项基础技术,应用在各个角落. 转自: Cassandra技术社区原文链接:https://mp.weixin.qq.com/s/Wv_DTdqLp7ExENNZefx4SQ 大数据自 2009 年走向人们的视野,亦如

文本挖掘:灵玖大数据汉语智能分词技术

汉语分词(Chinese Word Segmentation) 指的是将一个汉字序列切分成一个一个单独的词.分词就是将连续的字序列按照一定的规范重新组合成词序列的过程.中文分词是其他中文信息处理的基础,搜索引擎只是中文分词的一个应用.其他的比如机器翻译(MT).语音合成.自动分类.自动摘要.自动校对等等,都需要用到分词. 汉语自动分词是目前中文信息处理领域公认的一大难题,也是自然语言理解研究领域中最基本的一个环节.中文自动分词就是将用自然语言书写的文章.句段经计算机处理后,以词为单位逐词输出,为

大数据Spark与Storm技术选型

先做一个对比:   对比点 Storm Spark Streaming 实时计算模型 纯实时,来一条数据,处理一条数据 准实时,对一个时间段内的数据收集起来,作为一个RDD,再处理 实时计算延迟度 毫秒级 秒级 吞吐量 低 高 事务机制 支持完善 支持,但不够完善 健壮性 / 容错性 ZooKeeper,Acker,非常强 Checkpoint,WAL,一般 动态调整并行度 支持 不支持 再来说说Spark Streaming与Storm的应用场景   先说一下Storm: 1.建议在那种需要纯

大数据时代下是数据思维重要,还是相应技术重要?

技术做到一定程度,逐步发现自己的瓶颈.不由得开始思考这一方面的问题!到底大数据时代下,是相应的数据分析技术重要,还是相应数据思维重要? 先来说数据思维吧!什么是大数据思维,个人感觉应该是互联网思维的一种.是考虑到全面,而不是局部.是考虑到多维,而不是单一维度.不是靠拍脑门做决定,而是让数据说话,用数据做决策. 先说第一点,考虑全面,而不是局部.众所周知,移动互联网催生了大数据的产生.每一个人每一天通过手机能够的数据总和会是一个巨大的量.而通过这些非结构化的数据,我们首先面对的是如何处理这些数据,

准独角兽袋鼠云:入围“浙江大数据灵杰榜”,获评“星禾奖创新技术企业”!

2018年7月15日,由工信部.科技部.民政厅等相关主管单位指导,浙江省大数据科技协会主办的"2018浙江省大数据产业峰会(Zhejiang Big Data Industry Conference 2018)"在杭州JW万豪酒店隆重召开. 本届"2018浙江省大数据产业峰会"以"聚智慧·创未来"为主题,内容涵盖大数据政策规划.技术创新.行业应用实践等议题,吸引了包括阿里云.科大讯飞.网易.百度.等各地知名企业参加,袋鼠云以浙江省大数据科技协会理

工业大数据应用技术国家工程实验室

一.简介工业大数据应用技术国家工程实验室于2017年2月经×××批复立项建设,由航天云网北京航天数据股份有限公司牵头,联合中国机械工业集团公司.哈尔滨电气集团公司.阿里云计算有限公司.中国沈阳自动化研究所.北京工业大学.中国质量认证中心.北京金隅股份有限公司.北京工业大学共同组建. 实验室以推动工业大数据产业发展,攻克重大技术难关为目标,是全国唯一的应用技术研发创新与产业推动的支撑机构.实验室的建成,将有利于强化产业技术原始创新能力,加强基础和产业研究之间的有机衔接:整合产学研资源,培养工业互联