单例模式(Singleton)的6种实现

from:http://www.cnblogs.com/rush/archive/2011/10/30/2229565.html

1.1.1 摘要

在我们日常的工作中经常需要在应用程序中保持一个唯一的实例,如:IO处理,数据库操作等,由于这些对象都要占用重要的系统资源,所以我们必须限制这些实例的创建或始终使用一个公用的实例,这就是我们今天要介绍的——单例模式(Singleton)。

使用频率 高

单件模式(Singleton):保证一个类仅有一个实例,并提供一个访问它的全局访问点。

1.1.2 正文

图1单例模式(Singleton)结构图

单例模式(Singleton)是几个创建模式中最对立的一个,它的主要特点不是根据用户程序调用生成一个新的实例,而是控制某个类型的实例唯一性,通过上图我们知道它包含的角色只有一个,就是Singleton,它拥有一个私有构造函数,这确保用户无法通过new直接实例它。除此之外,该模式中包含一个静态私有成员变量instance与静态公有方法Instance()。Instance()方法负责检验并实例化自己,然后存储在静态成员变量中,以确保只有一个实例被创建。

图2单例模式(Singleton)逻辑模型

接下来我们将介绍6中不同的单例模式(Singleton)的实现方式。这些实现方式都有以下的共同点:

    1. 有一个私有的无参构造函数,这可以防止其他类实例化它,而且单例类也不应该被继承,如果单例类允许继承那么每个子类都可以创建实例,这就违背了Singleton模式“唯一实例”的初衷。
    2. 单例类被定义为sealed,就像前面提到的该类不应该被继承,所以为了保险起见可以把该类定义成不允许派生,但没有要求一定要这样定义。
    3. 一个静态的变量用来保存单实例的引用。
    4. 一个公有的静态方法用来获取单实例的引用,如果实例为null即创建一个。

版本一线程不安全

/// <summary>
/// A simple singleton class implements.
/// </summary>
public sealed class Singleton
{
    private static Singleton _instance = null;

    /// <summary>
    /// Prevents a default instance of the
    /// <see cref="Singleton"/> class from being created.
    /// </summary>
    private Singleton()
    {
    }

    /// <summary>
    /// Gets the instance.
    /// </summary>
    public static Singleton Instance
    {
        get { return _instance ?? (_instance = new Singleton()); }
    }
}

以上的实现方式适用于单线程环境,因为在多线程的环境下有可能得到Singleton类的多个实例。假如同时有两个线程去判断

(null == _singleton),并且得到的结果为真,那么两个线程都会创建类Singleton的实例,这样就违背了Singleton模式“唯一实例”的初衷。

版本二线程安全

/// <summary>
/// A thread-safe singleton class.
/// </summary>
public sealed class Singleton
{
    private static Singleton _instance = null;
    private static readonly object SynObject = new object();

    Singleton()
    {
    }

    /// <summary>
    /// Gets the instance.
    /// </summary>
    public static Singleton Instance
    {
        get
        {
            // Syn operation.
            lock (SynObject)
            {
                return _instance ?? (_instance = new Singleton());
            }
        }
    }
}

以上方式的实现方式是线程安全的,首先我们创建了一个静态只读的进程辅助对象,由于lock是确保当一个线程位于代码的临界区时,另一个线程不能进入临界区(同步操作)。如果其他线程试图进入锁定的代码,则它将一直等待,直到该对象被释放。从而确保在多线程下不会创建多个对象实例了。只是这种实现方式要进行同步操作,这将是影响系统性能的瓶颈和增加了额外的开销。

Double-Checked Locking

前面讲到的线程安全的实现方式的问题是要进行同步操作,那么我们是否可以降低通过操作的次数呢?其实我们只需在同步操作之前,添加判断该实例是否为null就可以降低通过操作的次数了,这样是经典的Double-Checked Locking方法。

/// <summary>
/// Double-Checked Locking implements a thread-safe singleton class
/// </summary>
public sealed class Singleton
{
    private static Singleton _instance = null;
    // Creates an syn object.
    private static readonly object SynObject = new object();

    Singleton()
    {
    }

    public static Singleton Instance
    {
        get
        {
            // Double-Checked Locking
            if (null == _instance)
            {
                lock (SynObject)
                {
                    if (null == _instance)
                    {
                        _instance = new Singleton();
                    }
                }
            }
            return _instance;
        }
    }
}

在介绍第四种实现方式之前,首先让我们认识什么是,当字段被标记为beforefieldinit类型时,该字段初始化可以发生在任何时候任何字段被引用之前。这句话听起了有点别扭,接下来让我们通过具体的例子介绍。

/// <summary>
/// Defines a test class.
/// </summary>
class Test
{
    public static string x = EchoAndReturn("In type initializer");

    public static string EchoAndReturn(string s)
    {
        Console.WriteLine(s);
        return s;
    }
}

上面我们定义了一个包含静态字段和方法的类Test,但要注意我们并没有定义静态的构造函数。

图3 Test类的IL代码

class Test
{
    public static string x = EchoAndReturn("In type initializer");

    // Defines a parameterless constructor.
    static Test()
    {
    }

    public static string EchoAndReturn(string s)
    {
        Console.WriteLine(s);
        return s;
    }
}

上面我们给Test类添加一个静态的构造函数。

图4 Test类的IL代码

通过上面Test类的IL代码的区别我们发现,当Test类包含静态字段,而且没有定义静态的构造函数时,该类会被标记为beforefieldinit。

现在也许有人会问:“被标记为beforefieldinit和没有标记的有什么区别呢”?OK现在让我们通过下面的具体例子看一下它们的区别吧!

class Test
{
    public static string x = EchoAndReturn("In type initializer");

    static Test()
    {
    }

    public static string EchoAndReturn(string s)
    {
        Console.WriteLine(s);
        return s;
    }
}

class Driver
{
    public static void Main()
    {
        Console.WriteLine("Starting Main");
        // Invoke a static method on Test
        Test.EchoAndReturn("Echo!");
        Console.WriteLine("After echo");
        Console.ReadLine();

        // The output result:
        // Starting Main
        // In type initializer
        // Echo!
        // After echo
    }
}

我相信大家都可以得到答案,如果在调用EchoAndReturn()方法之前,需要完成静态成员的初始化,所以最终的输出结果如下:

图5输出结果

接着我们在Main()方法中添加string y = Test.x,如下:

public static void Main()
{
    Console.WriteLine("Starting Main");
    // Invoke a static method on Test
    Test.EchoAndReturn("Echo!");
    Console.WriteLine("After echo");

    //Reference a static field in Test
    string y = Test.x;
    //Use the value just to avoid compiler cleverness
    if (y != null)
    {
        Console.WriteLine("After field access");
    }
    Console.ReadKey();

    // The output result:
    // In type initializer
    // Starting Main
    // Echo!
    // After echo
    // After field access

}

图6 输出结果

通过上面的输出结果,大家可以发现静态字段的初始化跑到了静态方法调用之前,Wo难以想象啊!

最后我们在Test类中添加一个静态构造函数如下:

class Test
{
    public static string x = EchoAndReturn("In type initializer");

    static Test()
    {
    }

    public static string EchoAndReturn(string s)
    {
        Console.WriteLine(s);
        return s;
    }
}

图7 输出结果

理论上,type initializer应该发生在”Echo!”之后和”After echo”之前,但这里却出现了不唯一的结果,只有当Test类包含静态构造函数时,才能确保type initializer的初始化发生在”Echo!”之后和”After echo”之前。

所以说要确保type initializer发生在被字段引用时,我们应该给该类添加静态构造函数。接下来让我们介绍单例模式的静态方式。

静态初始化

public sealed class Singleton
{
    private static readonly Singleton _instance = new Singleton();

    // Explicit static constructor to tell C# compiler
    // not to mark type as beforefieldinit
    static Singleton()
    {
    }

    /// <summary>
    /// Prevents a default instance of the
    /// <see cref="Singleton"/> class from being created.
    /// </summary>
    private Singleton()
    {
    }

    /// <summary>
    /// Gets the instance.
    /// </summary>
    public static Singleton Instance
    {
        get
        {
            return _instance;
        }
    }
}

以上方式实现比之前介绍的方式都要简单,但它确实是多线程环境下,C#实现的Singleton的一种方式。由于这种静态初始化的方式是在自己的字段被引用时才会实例化。

让我们通过IL代码来分析静态初始化。

图8静态初始化IL代码

首先这里没有beforefieldinit的修饰符,由于我们添加了静态构造函数当静态字段被引用时才进行初始化,因此即便很多线程试图引用_instance,也需要等静态构造函数执行完并把静态成员_instance实例化之后可以使用。

延迟初始化

/// <summary>
/// Delaies initialization.
/// </summary>
public sealed class Singleton
{
    private Singleton()
    {
    }

    /// <summary>
    /// Gets the instance.
    /// </summary>
    public static Singleton Instance { get { return Nested._instance; } }

    private class Nested
    {
        // Explicit static constructor to tell C# compiler
        // not to mark type as beforefieldinit
        static Nested()
        {
        }

        internal static readonly Singleton _instance = new Singleton();
    }
}

这里我们把初始化工作放到Nested类中的一个静态成员来完成,这样就实现了延迟初始化。

Lazy<T> type

/// <summary>
/// .NET 4‘s Lazy<T> type
/// </summary>
public sealed class Singleton
{
    private static readonly Lazy<Singleton> lazy =
        new Lazy<Singleton>(() => new Singleton());

    public static Singleton Instance { get { return lazy.Value; } }

    private Singleton()
    {
    }
}

这种方式的简单和性能良好,而且还提供检查是否已经创建实例的属性IsValueCreated。

具体例子

现在让我们使用单例模式(Singleton)实现负载平衡器,首先我们定义一个服务器类,它包含服务器名和IP地址如下:

/// <summary>
/// Represents a server machine
/// </summary>
class Server
{
    // Gets or sets server name
    public string Name { get; set; }

    // Gets or sets server IP address
    public string IP { get; set; }
}

由于负载平衡器只提供一个对象实例供服务器使用,所以我们使用单例模式(Singleton)实现该负载平衡器。

/// <summary>
/// The ‘Singleton‘ class
/// </summary>
sealed class LoadBalancer
{
    private static readonly LoadBalancer _instance =
        new LoadBalancer();

    // Type-safe generic list of servers
    private List<Server> _servers;
    private Random _random = new Random();

    static LoadBalancer()
    {
    }

    // Note: constructor is ‘private‘
    private LoadBalancer()
    {
        // Load list of available servers
        _servers = new List<Server>
            {
              new Server{ Name = "ServerI", IP = "192.168.0.108" },
              new Server{ Name = "ServerII", IP = "192.168.0.109" },
              new Server{ Name = "ServerIII", IP = "192.168.0.110" },
              new Server{ Name = "ServerIV", IP = "192.168.0.111" },
              new Server{ Name = "ServerV", IP = "192.168.0.112" },
            };
    }

    /// <summary>
    /// Gets the instance through static initialization.
    /// </summary>
    public static LoadBalancer Instance
    {
        get { return _instance; }
    }

    // Simple, but effective load balancer
    public Server NextServer
    {
        get
        {
            int r = _random.Next(_servers.Count);
            return _servers[r];
        }
    }
}

上面负载平衡器类LoadBalancer我们使用静态初始化方式实现单例模式(Singleton)。

static void Main()
{
    LoadBalancer b1 = LoadBalancer.Instance;
    b1.GetHashCode();
    LoadBalancer b2 = LoadBalancer.Instance;
    LoadBalancer b3 = LoadBalancer.Instance;
    LoadBalancer b4 = LoadBalancer.Instance;

    // Confirm these are the same instance
    if (b1 == b2 && b2 == b3 && b3 == b4)
    {
        Console.WriteLine("Same instance\n");
    }

    // Next, load balance 15 requests for a server
    LoadBalancer balancer = LoadBalancer.Instance;
    for (int i = 0; i < 15; i++)
    {
        string serverName = balancer.NextServer.Name;
        Console.WriteLine("Dispatch request to: " + serverName);
    }

    Console.ReadKey();
}

图9 LoadBalancer输出结果

1.1.3 总结

单例模式的优点:

单例模式(Singleton)会控制其实例对象的数量,从而确保访问对象的唯一性。

  1. 实例控制:单例模式防止其它对象对自己的实例化,确保所有的对象都访问一个实例。
  2. 伸缩性:因为由类自己来控制实例化进程,类就在改变实例化进程上有相应的伸缩性。

单例模式的缺点:

  1. 系统开销。虽然这个系统开销看起来很小,但是每次引用这个类实例的时候都要进行实例是否存在的检查。这个问题可以通过静态实例来解决。
  2. 开发混淆。当使用一个单例模式的对象的时候(特别是定义在类库中的),开发人员必须要记住不能使用new关键字来实例化对象。因为开发者看不到在类库中的源代码,所以当他们发现不能实例化一个类的时候会很惊讶。
  3. 对象生命周期。单例模式没有提出对象的销毁。在提供内存管理的开发语言(比如,基于.NetFramework的语言)中,只有单例模式对象自己才能将对象实例销毁,因为只有它拥有对实例的引用。在各种开发语言中,比如C++,其它类可以销毁对象实例,但是这么做将导致单例类内部的指针指向不明。

单例适用性

使用Singleton模式有一个必要条件:在一个系统要求一个类只有一个实例时才应当使用单例模式。反之,如果一个类可以有几个实例共存,就不要使用单例模式。

不要使用单例模式存取全局变量。这违背了单例模式的用意,最好放到对应类的静态成员中。

不要将数据库连接做成单例,因为一个系统可能会与数据库有多个连接,并且在有连接池的情况下,应当尽可能及时释放连接。Singleton模式由于使用静态成员存储类实例,所以可能会造成资源无法及时释放,带来问题。

参考:

http://csharpindepth.com/Articles/General/Singleton.aspx

时间: 2025-01-04 08:37:52

单例模式(Singleton)的6种实现的相关文章

OOAD之单例模式Singleton的6种写法

1  主要作用是保证在Java应用程序中,一个类Class只有一个实例存在. 一 :第一种 饿汉式(预加载) 1 public class Singleton { 2 private Singleton(){}////在自己内部定义自己一个实例,注意这是private 3 private static Singleton instance = new Singleton(); 4 5 public static Singleton getInstance() { 6 return instanc

设计模式之单例模式Singleton pattern

单例模式Singleton pattern 一种软件设计模式.在核心结构中只包含一个被称为单例的特殊类. 一个类只有一个对象实例,并且自行实例化向整个系统提供. 动机 一个系统中可以存在多个打印任务,但是只能有一个正在工作的任务:一个系统只能有一个窗口管理器或文件系统:一个系统只能有一个计时工具或ID(序号)生成器.如在Windows中就只能打开一个任务管理器.如果不使用机制对窗口对象进行唯一化,将弹出多个窗口,如果这些窗口显示的内容完全一致,则是重复对象,浪费内存资源:如果这些窗口显示的内容不

一天一个设计模式(二) -单例模式(Singleton)

前言 单例模式 (Singleton) 是一种创建型模式,指某个类采用Singleton模式,则在这个类被创建后,只可能产生一个实例供外部访问,并且提供一个全局的访问点. 正文 (一). 优缺点 Java中单例模式 (Singleton) 是一种广泛使用的设计模式.单例模式的主要作用是保证在Java程序中,某个类只有一个实例存在.一些管理器和控制器常被设计成单例模式. 1. 优点 提供了对唯一实例的受控访问. 由于在系统内存中只存在一个对象,因此可以节约系统资源,对于一些需要频繁创建和销毁的对象

二十四种设计模式:单例模式(Singleton Pattern)

单例模式(Singleton Pattern) 介绍保证一个类仅有一个实例,并提供一个访问它的全局访问点. 示例保证一个类仅有一个实例. Singleton using System; using System.Collections.Generic; using System.Text; namespace Pattern.Singleton { /// <summary> /// 泛型实现单例模式 /// </summary> /// <typeparam name=&q

.Net 单例模式(Singleton)

每台计算机可以有若干个打印机,但只能有一个Printer Spooler, 以避免两个打印作业同时输出到打印机中.每台计算机可以有若干传真卡,但是只应该有一个软件负责管理传真卡,以避免出现两份传真作业同时传到传真卡中的情况.每台计算机可以有若干通信端口,系统应当集中管理这些通信端口,以避免一个通信端口同时被两个请求同时调用. 问题描述: 单例模式 Singleton Pattern 问题解决: (1)单例模式简介: Singleton模式要求一个类有且仅有一个实例,并且提供了一个全局的访问点.这

单例模式——Singleton

模式分类: 从目的来看: 1.创建型(Creational)模式:负责对象创建. 2.结构型(Structural)模式:处理类于对象间的组合. 3.行为型(Behavioral)模式:类与对象交互中的职责分配. 从范围看: 1.类模式处理类于子类的静态关系. 2.对象模式处理对象间的动态关系. 动机 在软件系统中,经常有一些这样特殊的类,必须保证他们在系统中只存在一个实例,才能确保他们的逻辑正确性.以及良好的效率. 绕过常规的构造器,提供一种机制保证一个类只有一个实例. 意图 保证一个类仅有一

Java之单例模式(Singleton)

摘要: 1.Singleton模式作用:保证在Java应用程序中,一个Class只有一个实例存在 2.Singleton的第一种形式:饿汉式单例模式 (1) 构造函数私有 (2)有一个static 的private的该类的变量 (3)通过一个public getInstance的方法获取对它的引用 代码如下: 1 package com.ggzhang.Test; 2 3 public class Singleton { 4 5 private Singleton() { 6 7 } 8 9 p

【白话设计模式四】单例模式(Singleton)

转自:https://my.oschina.net/xianggao/blog/616385 0 系列目录 白话设计模式 工厂模式 单例模式 [白话设计模式一]简单工厂模式(Simple Factory) [白话设计模式二]外观模式(Facade) [白话设计模式三]适配器模式(Adapter) [白话设计模式四]单例模式(Singleton) [白话设计模式五]工厂方法模式(Factory Method) [白话设计模式六]抽象工厂模式(Abstract Factory) [白话设计模式七]策

php设计模式——单例模式(Singleton)

二十三种设计模式分为三大类: 创建型模式,共五种:工厂方法模式.抽象工厂模式.单例模式.建造者模式.原型模式. 结构型模式,共七种:适配器模式.装饰器模式.代理模式.外观模式.桥接模式.组合模式.享元模式. 行为型模式,共十一种:策略模式.模板方法模式.观察者模式.迭代子模式.责任链模式.命令模式.备忘录模式.状态模式.访问者模式.中介者模式.解释器模式. 谷歌的Android设备 华为的Android设备 IOS只属于苹果公司 IOS只属于苹果公司 1 <?php 2 3 /* 4 * php

设计模式之——单例模式(Singleton)的常见应用场景(转):

单例模式(Singleton)也叫单态模式,是设计模式中最为简单的一种模式,甚至有些模式大师都不称其为模式,称其为一种实现技巧,因为设计模式讲究对象之间的关系的抽象,而单例模式只有自己一个对象,也因此有些设计大师并把把其称为设计模式之一. 这里又不具体讲如何实现单例模式和介绍其原理(因为这方便的已经有太多的好文章介绍了),如果对单例模式不了解的可以先看下:http://terrylee.cnblogs.com/archive/2005/12/09/293509.html . 好多没怎么使用过的人