Hard-Margin SVM(支持向量机)

什么是Hard-Margin SVM?指的是这个向量机只适用于“数据完全可分(seperately)”的情况。

(一)什么是支持向量机?

上述三条直线,选择哪一条比较好?直觉上来说,最右面的那条直线最好。因为它的Margin比较胖,对数据点中混杂的噪声容忍度更高,更加robust。所以以后我们在计算w的时候,加上一个限制条件:寻找Margin最胖的w。

w能将所有的点分开,等价于:对于所有的点,有ynwTxn > 0.

首先需要解决一个问题:如何衡量distance?

为了更好的表达这个问题,我们先明确一下符号的含义:

把w拆成两部分。

现在我们已经知道了distance如何衡量,我们的问题转化成

这个问题是什么呢?以二维直线为例:对于一堆可以把所有数据点正确分类的直线,选择margin(b,w)最大的直线。

现在来想:这些直线都是可以scaling的,假设我scaling所有的w,使得:

再次转化问题:

现证明最终形式等价于上一个形式:

对于所有n条件下,寻找最小的|w|。假设找到一组(b,w)。且对于所有的n,有(a>1)。必然存在一组(b/a, w/a),满足条件,且具有更小的|w|。存在矛盾,所以必然有a=1.那么问题就等于于:。证明完毕。

上述形式即为支持向量机

我们可以看出,对于支持向量机,相当于在线性模型上加了一个限制条件,使得VC dimension减小。

具体的有:

这里的ρ代表的就是margin的大小。

支持向量机的好处是:

(二)如何计算SVM(1)

对于SVM这种形式呢,我们可以用一个叫做“二次规划”的工具来求解。

“二次规划”是一个工具程序,我们只要把SVM的输入输出改写成符合“二次规划”要求的输入输出,利用现有的工具计算即可。

(三)如何计算SVM(2)

对于non-linear SVM,数据点的维度非常大

现在的问题是:对于nonlinear SVM,如何实现下述目标?

这需要非常多的数学知识,下面只讲概况。

1)首先使用Lagrange Multipliers

SVM问题转化为:

2)对偶问题

其对偶问题只不过是将max与min位置互换。

补充说明:只有满足KKT condition的情况下,原问题(primal)与对偶问题(dual)的最优解相同。

(第四个条件:primal-inner optimal,可以通过Lagrange Multipliers那一张PPT解释)

继续求解:

再根据KKT condition,我们可以利用α的值,表达出optimal (b,w)

PS:

1)根据,当αn大于0时,必然有,也即:第n个数据点在margin上;

2)同时,在计算w和b的时候,只有大于0的αn起作用。

所以对于αn> 0的数据点(zn, yn)称之为支持向量

这个支持向量不同于之前我们定义的支持向量,因为两个都为0的情况没有考虑。

问题真的解决了么?没有。两个问题:

1)如果N很大的话,例如N=30000,那么单单存储Q矩阵(N*N)就需要>3G RAM。所以我们需要特殊的、为SVM定制的QP程序;

2)我们并没有实现目标,只是把计算复杂度给隐藏了。

(四)真正解决SVM:核函数

举一个例子:

这样的话:

OK,现在SVM问题解决了!

补充一点关于核函数的知识:

1)对于Polynomial 核函数,我们最常用的形式是:如下第三种形式

2)最好先从Q=1开始(先从线性模型开始做)

3)高斯核函数

因为高斯核函数很难从物理角度解释,所以使用的使用必须慎重的选择参数:

3)三种核函数比较:

时间: 2024-10-27 19:40:01

Hard-Margin SVM(支持向量机)的相关文章

SVM支持向量机算法

参考资料:http://www.cppblog.com/sunrise/archive/2012/08/06/186474.html                   http://blog.csdn.net/sunanger_wang/article/details/7887218 我的数据挖掘算法代码:https://github.com/linyiqun/DataMiningAlgorithm 介绍 svm(support vector machine)是一种用来进行模式识别,模式分类的

SVM -支持向量机原理详解与实践之四

SVM -支持向量机原理详解与实践之四 SVM原理分析 SMO算法分析 SMO即Sequential minmal optimization, 是最快的二次规划的优化算法,特使对线性SVM和稀疏数据性能更优.在正式介绍SMO算法之前,首先要了解坐标上升法. 坐标上升法(Coordinate ascent) 坐标上升法(Coordinate Ascent)简单点说就是它每次通过更新函数中的一维,通过多次的迭代以达到优化函数的目的. 坐标上升法原理讲解 为了更加通用的表示算法的求解过程,我们将算法表

SVM -支持向量机原理详解与实践之二

SVM -支持向量机原理详解与实践之二 SVM原理分析 以下内容接上篇. 拉格朗日对偶性(Largrange duality)深入分析 前面提到了支持向量机的凸优化问题中拉格朗日对偶性的重要性. 因为通过应用拉格朗日对偶性我们可以寻找到最优超平面的二次最优化, 所以以下可以将寻找最优超平面二次最优化(原问题),总结为以下几个步骤: 在原始权重空间的带约束的优化问题.(注意带约束) 对优化问题建立拉格朗日函数 推导出机器的最优化条件 最后就是在对偶空间解决带拉格朗日乘子的优化问题. 注:以上这个四

SVM 支持向量机

(支持向量机)support vector machine是一种二分类模型,是寻求结构风险最小,实现经验和置信范围最小化. 它的基本模型是定义在特征空间上的间隔最大化的线性分类器,间隔最大化使得它有区别于感知机,并且是唯一的. 学习策略:间隔最大化(解凸二次规划的问题) 线性分类器也叫感知机,就是在N维的数据空间找到一个分类超平面.然后svm其实就是寻找间隔最大化的线性分类器. 首先说他在线性可分的数据集上的: 超平面就是在n维空间上可以将数据线性分类的平面. 超平面: WTX+b=0  W为向

SVM -支持向量机原理详解与实践之三

SVM -支持向量机原理详解与实践之三 什么是核 什么是核,核其实就是一种特殊的函数,更确切的说是核技巧(Kernel trick),清楚的明白这一点很重要. 为什么说是核技巧呢?回顾到我们的对偶问题:     映射到特征空间后约束条件不变,则为:     在原始特征空间中主要是求,也就是和的内积(Inner Product),也称数量积(Scalar Product)或是点积(Dot Product),映射到特征空间后就变成了求,也就是和的映射到特征空间之后的内积,就如我前面所提到的在原始空间

【机器学习算法-python实现】svm支持向量机(2)—简化版SMO算法

(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景知识 通过上一节我们通过引入拉格朗日乗子得到支持向量机变形公式.详细变法可以参考这位大神的博客--地址 参照拉格朗日公式F(x1,x2,...λ)=f(x1,x2,...)-λg(x1,x2...).我们把上面的式子变型为: 约束条件就变成了: 下面就根据最小优化算法SMO(Sequential Minimal Optimization).找出距离分隔面最近的点,也就是支持向量集.如下图的蓝色点所示.

学习Opencv2.4.9(四)---SVM支持向量机

作者:咕唧咕唧liukun321 来自:http://blog.csdn.net/liukun321 先来看一下什么是SVM(支持向量机) SVM是一种训练机器学习的算法,可以用于解决分类和回归问题,同时还使用了一种称之为kernel trick(支持向量机的核函数)的技术进行数据的转换,然后再根据这些转换信息,在可能的输出之中找到一个最优的边界(超平面).简单来说,就是做一些非常复杂的数据转换工作,然后根据预定义的标签或者输出进而计算出如何分离用户的数据. 支持向量机方法是建立在统计学习理论的

OpenCV2.4.10之samples_cpp_tutorial-code_learn-----ml(SVM支持向量机一)

本系列学习笔记参考自OpenCV2.4.10之opencv\sources\samples\cpp\tutorial_code和http://www.opencv.org.cn/opencvdoc/2.3.2/html/genindex.html SVM为支持向量机.它是一个分类器.简单说,SVM是通过我们一组训练样本来对平面进行一个最优的分割. introduction_to_svm.cpp(SVM支持向量机) demo源码和注释如下: #include "stdafx.h" //预

【机器学习算法-python实现】svm支持向量机(3)—核函数

(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景知识 前面我们提到的数据集都是线性可分的,这样我们可以用SMO等方法找到支持向量的集合.然而当我们遇到线性不可分的数据集时候,是不是svm就不起作用了呢?这里用到了一种方法叫做核函数,它将低维度的数据转换成高纬度的从而实现线性可分. 可能有的人不明白为什么低维度的数据集转换成高维度的就可以实现线性可分,下面摘抄一个网上的例子解释一下.看下面这个图,我们设红色的区域是一组数据 ,而直线ab除了红色区域以

6-11 SVM支持向量机2

SVM支持向量机的核:线性核.进行预测的时候我们需要把正负样本的数据装载在一起,同时我们label标签也要把正负样本的数据全部打上一个label. 第四步,开始训练和预测.ml(machine learning(机器学习模块)). 原文地址:https://www.cnblogs.com/ZHONGZHENHUA/p/9785154.html