【互动问答分享】第18期决胜云计算大数据时代Spark亚太研究院公益大讲堂(改)

“决胜云计算大数据时代”

Spark亚太研究院100期公益大讲堂 【第18期互动问答分享】

Q1:Master和Driver的是同一个东西吗?

  • 两者不是同一个东西,在Standalone模式下Master是用于集群资源管理和调度的,而Driver适用于指挥Worker上的Executor通过多线的方式处理任务的;
  • Master位于集群的管理节点,一般和 NameNode在同一个节点上;
  • Driver一般都位于客户机上,客户机一般都不属于集群,但是和集群在同一个网络环境下,因为客户机中的Driver要和集群中的Executor频繁的交互;

Q2:Standalone和Yarn之间如何选择

  • Standalone和Yarn都是用于资源管理的系统,Standalone是专门为Spark打造的资源管理和分配方式,是轻量级的,而Yarn是大数据通用的资源管理框架,不仅可以用于管理Spark顶点资源分配,也可以用于管理实现了Yarn的其它计算平台的资源管理和分配;
  • 如果在生产系统中有多套计算框架 ,例如Spark、MapReduce、Mahout并存,建议使用Yarn或者Mesos进行资源统一的管理和调度;如果只使用Spark的话,建议使用Standalone就足够了,Yarn比较消耗资源;

Q3:Spark 的HA怎么处理的?

  • 对于Master的HA,在Standalone模式下,Worker节点自动是HA的,对于Master的HA,一般采用Zookeeper;
  • Utilizing ZooKeeper to provide leader election and some state storage, you can launch multiple Masters in your cluster connected to the same ZooKeeper instance. One will be elected “leader” and the others will remain in standby mode. If the current leader dies, another Master will be elected, recover the old Master’s state, and then resume scheduling. The entire recovery process (from the time the the first leader goes down) should take between 1 and 2 minutes. Note that this delay only affects scheduling new applications – applications that were already running during Master failover are unaffected;
  • 对于Yarn和Mesos模式,ResourceManager一般也会采用ZooKeeper进行HA;
时间: 2024-10-27 10:32:48

【互动问答分享】第18期决胜云计算大数据时代Spark亚太研究院公益大讲堂(改)的相关文章

【互动问答分享】第5期决胜云计算大数据时代Spark亚太研究院公益大讲堂

Spark亚太研究院100期公益大讲堂 [第5期互动问答分享] Q1:spark怎样支持即席,应该不是spark sql吧,是hive on spark么? Spark1.0 以前支持即席查询的技术是Shark; Spark 1.0和 Spark 1.0.1支持的即席查询技术是Spark SQL; 尚未发布的Spark 1.1开始 Spark SQL是即席查询的核心,我们期待Hive on Spark也能够支持即席查询: Q2:现在spark 1.0.0版本是支持hive on spark么,它

【互动问答分享】第8期决胜云计算大数据时代Spark亚太研究院公益大讲堂

“决胜云计算大数据时代” Spark亚太研究院100期公益大讲堂 [第8期互动问答分享] Q1:spark线上用什么版本好? 建议从最低使用的Spark 1.0.0版本,Spark在1.0.0开始核心API已经稳定: 从功能的角度考虑使用最新版本的Spark 1.0.2也是非常好的,Spark 1.0.2在Spark 1.0.1的基础上做了非常多的改进: Spark 1.0.2改进参考 http://spark.apache.org/releases/spark-release-1-0-2.ht

【互动问答分享】第6期决胜云计算大数据时代Spark亚太研究院公益大讲堂

“决胜云计算大数据时代” Spark亚太研究院100期公益大讲堂 [第6期互动问答分享] Q1:spark streaming 可以不同数据流 join吗? Spark Streaming不同的数据流可以进行join操作:       Spark Streaming is an extension of the core Spark API that allows enables high-throughput, fault-tolerant stream processing of live

【互动问答分享】第15期决胜云计算大数据时代Spark亚太研究院公益大讲堂

"决胜云计算大数据时代" Spark亚太研究院100期公益大讲堂 [第15期互动问答分享] Q1:AppClient和worker.master之间的关系是什么? :AppClient是在StandAlone模式下SparkContext.runJob的时候在Client机器上应       用程序的代表,要完成程序的registerApplication等功能: 当程序完成注册后Master会通过Akka发送消息给客户端来启动Driver: 在Driver中管理Task和控制Work

【互动问答分享】第10期决胜云计算大数据时代Spark亚太研究院公益大讲堂

"决胜云计算大数据时代" Spark亚太研究院100期公益大讲堂 [第10期互动问答分享] Q1:Spark on Yarn的运行方式是什么? Spark on Yarn的运行方式有两种:Client和Cluster模式 Client模式如下所示: Cluster模式如下所示: Q2:Yarn的框架内部是如何实现的? Yarn是一个框架,内部实现好了RM和NM: 公开课: 上海:9月26-28日,<决胜大数据时代:Hadoop.Yarn.Spark企业级最佳实践> 北京:

【互动问答分享】第17期决胜云计算大数据时代Spark亚太研究院公益大讲堂

"决胜云计算大数据时代" Spark亚太研究院100期公益大讲堂 [第17期互动问答分享] Q1:为了加快spark shuffle 的执行速度是否可以把spark_local_dirs 指向一块固态硬盘上面,这样做是否有效果. 可以把spark_local_dirs指向一块固态硬盘上面,这样会非常有效的提升Spark执行速度: 同时想更快的提升Spark运行速度的话可以指定多个Shuffle输出的目录,让Shuffle并行读写磁盘: Q2:solidation=true只是在同一机器

【互动问答分享】第13期决胜云计算大数据时代Spark亚太研究院公益大讲堂

“决胜云计算大数据时代” Spark亚太研究院100期公益大讲堂 [第13期互动问答分享] Q1:tachyon+spark框架现在有很多大公司在使用吧? Yahoo!已经在长期大规模使用: 国内也有公司在使用: Q2:impala和spark sql如何选择呢? Impala已经被官方宣布“安乐死”,被官方温柔的放弃: Spark SQL是Spark的核心子框架,同时能够和图计算.机器学习框架无缝集成,强烈推荐使用! Q3:如果有程序采用流式不停往tachyon集群写数据,但tachyon内存

【互动问答分享】第12期决胜云计算大数据时代Spark亚太研究院公益大讲堂

"决胜云计算大数据时代" Spark亚太研究院100期公益大讲堂 [第12期互动问答分享]   Q1:jobserver 企业使用情况如何? 中国有一家视频网站已经使用超过JobServer超过半年的时间: 2013年和2014年Spark Summit均大力推荐使用JobServer: Q2:请问,jobserver是适合企业内部还是供外部客户使用(可能并发.安全有要求),还是两者ok? 目前可见的企业使用案例均是用在企业内部: 如果是企业外部可以作为云服务或者大数据资源池使用: Q

【互动问答分享】第2期决胜云计算大数据时代Spark亚太研究院公益大讲堂

"决胜云计算大数据时代" Spark亚太研究院100期公益大讲堂 [第2期互动问答分享] Q1:新手学习spark如何入手才好? 先学习Scala的内容,强烈推荐<快学Scala>: 然后按照我们免费发布的"云计算分布式大数据Spark实战高手之路(共3本书)"循序渐进的学习即可,其中"云计算分布式大数据Spark实战高手之路---从零开始"涵盖了Spark1.0的所有主题:包括Spark集群的构建,Spark架构设计.Spark内核