如何向caffe中添加层

修改caffe\src\caffe\proto\caffe.proto

在最后添加centerloss层的参数信息

message CenterLossParameter {
optional uint32 num_output = 1; // The number of outputs for the layer
optional FillerParameter center_filler = 2; // The filler for the centers
// The first axis to be lumped into a single inner product computation;
// all preceding axes are retained in the output.
// May be negative to index from the end (e.g., -1 for the last axis).
optional int32 axis = 3 [default = 1];
}

 

添加层类型信息,注意不能与其他层的数字相同。

 

optional CenterLossParameter center_loss_param = 148;

将cpu和gpu两个模式下运行的文件添加到src\caffe\layers\

如何编写层,请查看官方文档或者谷歌

3.添加层的头文件

向\include\caffe\layers\中添加头文件

时间: 2024-10-28 23:38:26

如何向caffe中添加层的相关文章

如何在caffe中添加新的Layer

如何在caffe中添加新的Layer 本文分为两部分,先写一个入门的教程,然后再给出自己添加maxout与NIN的layer的方法 (一) 其实在Github上已经有答案了(https://github.com/BVLC/caffe/issues/684) Here's roughly the process I follow. Add a class declaration for your layer to the appropriate one of common_layers.hpp, 

caffe中HingeLossLayer层原理以及源码分析

输入: bottom[0]: NxKx1x1维,N为样本个数,K为类别数.是预测值. bottom[1]: Nx1x1x1维, N为样本个数,类别为K时,每个元素的取值范围为[0,1,2,-,K-1].是groundTruth. 输出: top[0]: 1x1x1x1维, 求得是hingeLoss. 关于HingeLoss: p: 范数,默认是L1范数,可以在配置中设置为L1或者L2范数. :指示函数,如果第n个样本的真实label为k,则为,否则为-1. tnk: bottom[0]中第n个样

如何在caffe中添加新类型的layer

如何在caffe中添加新类型的layer 参考:https://github.com/BVLC/caffe/issues/684 Add a class declaration for your layer to the appropriate one of common_layers.hpp,data_layers.hpp, loss_layers.hpp, neuron_layers.hpp, or vision_layers.hpp. Include an inline implement

Caffe 中添加自己的网络层

写在前面: Caffe 中有众多的网络层,最新版本的代码已经涵盖了很多种类型的网络层,然而,有时候由于各种原因,其给定的网络层不能满足我们的要求,这时候就要对其更改,以使其满足自己的需求,感谢作者开源代码以及众多的代码维护者. 由于Caffe 中的网络层都是直接或者间接地给予Layer 基类,所以,在我们需要添加新的类型时,就需要选择好自己的基类,以使我们能够更好的利用基类已有的一些方法.我们新建的类可以基于 1. 直接继承于Layer 2. 继承于DataLayer 3. 继承于NeuronL

TensorFlow与caffe中卷积层feature map大小计算

刚刚接触Tensorflow,由于是做图像处理,因此接触比较多的还是卷及神经网络,其中会涉及到在经过卷积层或者pooling层之后,图像Feature map的大小计算,之前一直以为是与caffe相同的,后来查阅了资料发现并不相同,将计算公式贴在这里,以便查阅: caffe中: TF中: 参考: http://blog.csdn.net/lujiandong1/article/details/53728053 http://www.cnblogs.com/denny402/p/5071126.h

在caffe中添加新的layer

比如现在要添加一个vision layer,名字叫Ly_Layer:(一般命名第一个字母大写,其余小写.) 1.属于哪个类型的layer(共五种:common_layer, data_layer, loss_layer, neuron_layer, vision_layer ),就打开哪个 hpp文件(caffe-master/include/caffe/),这里就打开vision_layers.hpp,然后自己添加该layer的定义,或者直接复制Convolution_Layer的相关代码来修

caffe 中 python 数据层

caffe中大多数层用C++写成. 但是对于自己数据的输入要写对应的输入层,比如你要去图像中的一部分,不能用LMDB,或者你的label 需要特殊的标记. 这时候就需要用python 写一个输入层. 如在fcn 的voc_layers.py 中 有两个类: VOCSegDataLayer SBDDSegDataLayer 分别包含:setup,reshape,forward, backward, load_image, load_label. 不需要backward 没有参数更新. import

在caffe中增加和convolution相同的层

1.打开vision_layers.hpp,复制ConvolutionLayer的代码,把类名还有构造函数的名字改为WtfLayer,把里面的带GPU的函数删掉. 2.Wtf_layer.cpp 添加到src\caffe\layers文件夹中,代码内容复制conv_layer.cpp 把对应的类名修改 3.修改proto/caffe.proto文件,在optional ConvolutionParameter convolution_param = 106;的下一行添加 optional Wtf

caffe中关于(ReLU层,Dropout层,BatchNorm层,Scale层)输入输出层一致的问题

在卷积神经网络中.常见到的激活函数有Relu层 layer { name: "relu1" type: "ReLU" bottom: "pool1" top: "pool1" }其中可选参数为:negative_slope:默认为0. 对标准的ReLU函数进行变化,如果设置了这个值,那么数据为负数时,就不再设置为0,而是用原始数据乘以negative_slope relu层有个很大的特点:bottom(输入)和top(输出)一