CNN网络中的不变性理解

神经网络中的不变性

原文:https://blog.csdn.net/voxel_grid/article/details/79275637

  个人认为cnn中conv层对应的是“等变性”(Equivariance),由于conv层的卷积核对于特定的特征才会有较大激活值,所以不论 上一层特征图谱(feature map)中的某一特征平移到何处,卷积核都会找到该特征并在此处呈现较大的激活值。这应该就是“等变性”

  这种“等变性”是由conv层的 1局部连接 2权值共享 两个特性得到的。
  所谓的“形变不变性”,应该指的是,若是特征有较小的形变,那么激活值不会有太多的变化。

  个人觉得没有“旋转不变性”,只能通过data argumentation这种方式(人为地对样本做 镜像、旋转、缩放等操作)让CNN自己去学习旋转不变性。
而所谓的“尺度不变性”,个人觉得应该是由类似于SSD这种对不同尺寸(分辨率)的feature map作相同的处理得到的。CNN本身并不具备尺度不变性。

  真正的“不变性”(invariation)应该对应于pooling层,以max-pooling为例,若是2x2的池化,那么特征在2x2的区域中平移,得到的结果是一样的。越往后的pooling层,2x2的核的感受野就越大、所允许的平移也就越大。个人感觉这种“不变性”往往是针对 分类任务而言的。(其实说白了, 检测任务就是对局部区域的分类,分割任务就是对单个像素的分类)


  还有一篇博文对CNN 对于图像特征的各种不变性做了比较生动的解释:
  http://blog.csdn.net/xiaojiajia007/article/details/78396319(原文)

原文地址:https://www.cnblogs.com/xiaoboge/p/10583180.html

时间: 2024-10-12 13:33:36

CNN网络中的不变性理解的相关文章

在CNN网络中roi从原图映射到feature map中的计算方法

在使用fast rcnn以及faster rcnn做检测任务的时候,涉及到从图像的roi区域到feature map中roi的映射,然后再进行roi_pooling之类的操作.比如图像的大小是(600,800),在经过一系列的卷积以及pooling操作之后在某一个层中得到的feature map大小是(38,50),那么在原图中roi是(30,40,200,400),在feature map中对应的roi区域应该是roi_start_w = round(30 * spatial_scale);r

Tensorflow的MNIST进阶教程CNN网络参数理解

背景 问题说明 分析 LeNet5参数 MNIST程序参数 遗留问题 小结 背景 之前博文中关于CNN的模型训练功能上是能实现,但是研究CNN模型内部结构的时候,对各个权重系数w,偏差b的shape还是存在疑惑,为什么要取1024,为什么取7*7*64,最近找到了一些相关资料,对这个问题有了新的理解,下面和大家分享一下. 问题说明 # Input Layer x = tf.placeholder('float',[None,784]) y_ = tf.placeholder('float',[N

CNN网络架构演进:从LeNet到DenseNet

卷积神经网络可谓是现在深度学习领域中大红大紫的网络框架,尤其在计算机视觉领域更是一枝独秀.CNN从90年代的LeNet开始,21世纪初沉寂了10年,直到12年AlexNet开始又再焕发第二春,从ZF Net到VGG,GoogLeNet再到ResNet和最近的DenseNet,网络越来越深,架构越来越复杂,解决反向传播时梯度消失的方法也越来越巧妙.新年有假期,就好好总结一波CNN的各种经典架构吧,领略一下CNN的发展历程中各路大神之间的智慧碰撞之美. 上面那图是ILSVRC历年的Top-5错误率,

一文带你了解卷积网络中的几何学

文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 原标题 | An Easy Guide to Gauge Equivariant Convolutional Networks 作者 | Michael Kissner 译者 | AI小山(工程师).Mr-UC(中国科学院大学) 几何深度学习是个很令人兴奋的新领域,但是它的数学运算逐渐转移到代数拓朴和理论物理的范围. 在Cohen等人的论文<规范等变卷积网络和二十面体CNN>中,这种现象尤其明显.

卷积网络中的几何学你了解多少?

几何深度学习是个很令人兴奋的新领域,但是它的数学运算逐渐转移到代数拓朴和理论物理的范围. 在Cohen等人的论文<规范等变卷积网络和二十面体CNN>中,这种现象尤其明显.这篇论文也正是本文要探讨的对象.论文中使用了规范场理论的用辞,那些喜欢把“量子”和“场”两个词合起来使用的所有的物理学当中,规范场理论居于中心地位.论文承诺对规范场理论的基础知识提供一个直观的解读,其实,我也不得不承认,它做到了,而且它也许是目前我看到的最棒的入门介绍.然而,它终究是个很难的学科. 我在这里想做的,是纯直观的解

BT网络中DHT和UPnp的解释(转)

DHT 类似Tracker的根据种子特征码返回种子信息的网络.DHT全称叫分布式哈希表(Distributed Hash Table),是一种分布式存储方法.在不需要服务器的情况下,每个客户端负责一个小范围的路由,并负责存储一小部分数据,从而实现整个DHT网络的寻址和存储.新版BitComet允许同行连接DHT网络和Tracker,也就是说在完全不连上Tracker服务器的情况下,也可以很好的下载,因为它可以在DHT网络中寻找下载同一文件的其他用户.BitComet的DHT网络协议和BitTor

php中session的理解

一.Session是什么 Session一般译作会话,牛津词典对其的解释是进行某活动连续的一段时间.从不同的层面看待session,它有着类似但不完全同样的含义.比方,在web应用的用户看来,他打开浏览器訪问一个电子商务站点,登录.并完毕购物直到关闭浏览器,这是一个会话. 而在web应用的开发人员开来.用户登录时须要创建一个数据结构以存储用户的登录信息.这个结构也叫做session. 因此在谈论session的时候要注意上下文环境. 二.Session因何而来? 我们知道http协议是WEBse

TCP 协议中MSS的理解

在介绍MSS之前我们必须要理解下面的几个重要的概念.MTU: Maxitum Transmission Unit 最大传输单元MSS: Maxitum Segment Size 最大分段大小PPPoE: PPP Over Ethernet(在以太网上承载PPP协议),就是因为这个协议的出现我们才有必要修改我们的MSS或者是MTU值.MTU最大传输单元,这个最大传输单元实际上和链路层协议有着密切的关系,EthernetII帧的结构DMAC+SMAC+Type+Data+CRC          

tcp协议中mss的理解

在介绍MSS之前我们必须要理解下面的几个重要的概念.<blockquote>MTU: Maxitum Transmission Unit 最大传输单元MSS: Maxitum Segment Size 最大分段大小PPPoE: PPP Over Ethernet(在以太网上承载PPP协议),就是因为这个协议的出现我们才有必要修改我们的MSS或者是MTU值.</blockquote>MTU最大传输单元,这个最大传输单元实际上和链路层协议有着密切的关系,EthernetII帧的结构&l