[转] 理解交叉熵在损失函数中的意义

转自:https://blog.csdn.net/tsyccnh/article/details/79163834

关于交叉熵在loss函数中使用的理解
交叉熵(cross entropy)是深度学习中常用的一个概念,一般用来求目标与预测值之间的差距。以前做一些分类问题的时候,没有过多的注意,直接调用现成的库,用起来也比较方便。最近开始研究起对抗生成网络(GANs),用到了交叉熵,发现自己对交叉熵的理解有些模糊,不够深入。遂花了几天的时间从头梳理了一下相关知识点,才算透彻的理解了,特地记录下来,以便日后查阅。

信息论
交叉熵是信息论中的一个概念,要想了解交叉熵的本质,需要先从最基本的概念讲起。

1 信息量
首先是信息量。假设我们听到了两件事,分别如下:
事件A:巴西队进入了2018世界杯决赛圈。
事件B:中国队进入了2018世界杯决赛圈。
仅凭直觉来说,显而易见事件B的信息量比事件A的信息量要大。究其原因,是因为事件A发生的概率很大,事件B发生的概率很小。所以当越不可能的事件发生了,我们获取到的信息量就越大。越可能发生的事件发生了,我们获取到的信息量就越小。那么信息量应该和事件发生的概率有关。

假设XX是一个离散型随机变量,其取值集合为χχ,概率分布函数p(x)=Pr(X=x),x∈χp(x)=Pr(X=x),x∈χ,则定义事件X=x0X=x0的信息量为:

I(x0)=−log(p(x0))
I(x0)=−log(p(x0))

由于是概率所以p(x0)p(x0)的取值范围是[0,1][0,1],绘制为图形如下:

可见该函数符合我们对信息量的直觉
2 熵
考虑另一个问题,对于某个事件,有nn种可能性,每一种可能性都有一个概率p(xi)p(xi)
这样就可以计算出某一种可能性的信息量。举一个例子,假设你拿出了你的电脑,按下开关,会有三种可能性,下表列出了每一种可能的概率及其对应的信息量

序号 事件 概率p 信息量I
A 电脑正常开机 0.7 -log(p(A))=0.36
B 电脑无法开机 0.2 -log(p(B))=1.61
C 电脑爆炸了 0.1 -log(p(C))=2.30
注:文中的对数均为自然对数

我们现在有了信息量的定义,而熵用来表示所有信息量的期望,即:
H(X)=−∑i=1np(xi)log(p(xi))
H(X)=−∑i=1np(xi)log(p(xi))
其中n代表所有的n种可能性,所以上面的问题结果就是
H(X)===−[p(A)log(p(A))+p(B)log(p(B))+p(C))log(p(C))]0.7×0.36+0.2×1.61+0.1×2.300.804
H(X)=−[p(A)log(p(A))+p(B)log(p(B))+p(C))log(p(C))]=0.7×0.36+0.2×1.61+0.1×2.30=0.804
然而有一类比较特殊的问题,比如投掷硬币只有两种可能,字朝上或花朝上。买彩票只有两种可能,中奖或不中奖。我们称之为0-1分布问题(二项分布的特例),对于这类问题,熵的计算方法可以简化为如下算式:
H(X)==−∑i=1np(xi)log(p(xi))−p(x)log(p(x))−(1−p(x))log(1−p(x))
H(X)=−∑i=1np(xi)log(p(xi))=−p(x)log(p(x))−(1−p(x))log(1−p(x))
3 相对熵(KL散度)
相对熵又称KL散度,如果我们对于同一个随机变量 x 有两个单独的概率分布 P(x) 和 Q(x),我们可以使用 KL 散度(Kullback-Leibler (KL) divergence)来衡量这两个分布的差异

维基百科对相对熵的定义

In the context of machine learning, DKL(P‖Q) is often called the information gain achieved if P is used instead of Q.

即如果用P来描述目标问题,而不是用Q来描述目标问题,得到的信息增量。

在机器学习中,P往往用来表示样本的真实分布,比如[1,0,0]表示当前样本属于第一类。Q用来表示模型所预测的分布,比如[0.7,0.2,0.1]
直观的理解就是如果用P来描述样本,那么就非常完美。而用Q来描述样本,虽然可以大致描述,但是不是那么的完美,信息量不足,需要额外的一些“信息增量”才能达到和P一样完美的描述。如果我们的Q通过反复训练,也能完美的描述样本,那么就不再需要额外的“信息增量”,Q等价于P。

KL散度的计算公式:
DKL(p||q)=∑i=1np(xi)log(p(xi)q(xi))(3.1)
(3.1)DKL(p||q)=∑i=1np(xi)log(p(xi)q(xi))

n为事件的所有可能性。
DKLDKL的值越小,表示q分布和p分布越接近
4 交叉熵
对式3.1变形可以得到:
DKL(p||q)==∑i=1np(xi)log(p(xi))−∑i=1np(xi)log(q(xi))−H(p(x))+[−∑i=1np(xi)log(q(xi))]
DKL(p||q)=∑i=1np(xi)log(p(xi))−∑i=1np(xi)log(q(xi))=−H(p(x))+[−∑i=1np(xi)log(q(xi))]
等式的前一部分恰巧就是p的熵,等式的后一部分,就是交叉熵:
H(p,q)=−∑i=1np(xi)log(q(xi))
H(p,q)=−∑i=1np(xi)log(q(xi))
在机器学习中,我们需要评估label和predicts之间的差距,使用KL散度刚刚好,即DKL(y||y? )DKL(y||y^),由于KL散度中的前一部分−H(y)−H(y)不变,故在优化过程中,只需要关注交叉熵就可以了。所以一般在机器学习中直接用用交叉熵做loss,评估模型。

机器学习中交叉熵的应用
1 为什么要用交叉熵做loss函数?
在线性回归问题中,常常使用MSE(Mean Squared Error)作为loss函数,比如:
loss=12m∑i=1m(yi−yi^)2
loss=12m∑i=1m(yi−yi^)2
这里的m表示m个样本的,loss为m个样本的loss均值。
MSE在线性回归问题中比较好用,那么在逻辑分类问题中还是如此么?

2 交叉熵在单分类问题中的使用
这里的单类别是指,每一张图像样本只能有一个类别,比如只能是狗或只能是猫。
交叉熵在单分类问题上基本是标配的方法
loss=−∑i=1nyilog(yi^)(2.1)
(2.1)loss=−∑i=1nyilog(yi^)
上式为一张样本的loss计算方法。式2.1中n代表着n种类别。
举例说明,比如有如下样本

对应的标签和预测值

* 猫 青蛙 老鼠
Label 0 1 0
Pred 0.3 0.6 0.1
那么
loss==−(0×log(0.3)+1×log(0.6)+0×log(0.1)−log(0.6)
loss=−(0×log(0.3)+1×log(0.6)+0×log(0.1)=−log(0.6)
对应一个batch的loss就是
loss=−1m∑j=1m∑i=1nyjilog(yji^)
loss=−1m∑j=1m∑i=1nyjilog(yji^)
m为当前batch的样本数

3 交叉熵在多分类问题中的使用
这里的多类别是指,每一张图像样本可以有多个类别,比如同时包含一只猫和一只狗
和单分类问题的标签不同,多分类的标签是n-hot。
比如下面这张样本图,即有青蛙,又有老鼠,所以是一个多分类问题

对应的标签和预测值

* 猫 青蛙 老鼠
Label 0 1 1
Pred 0.1 0.7 0.8
值得注意的是,这里的Pred不再是通过softmax计算的了,这里采用的是sigmoid。将每一个节点的输出归一化到[0,1]之间。所有Pred值的和也不再为1。换句话说,就是每一个Label都是独立分布的,相互之间没有影响。所以交叉熵在这里是单独对每一个节点进行计算,每一个节点只有两种可能值,所以是一个二项分布。前面说过对于二项分布这种特殊的分布,熵的计算可以进行简化。

同样的,交叉熵的计算也可以简化,即
loss=−ylog(y? )−(1−y)log(1−y? )
loss=−ylog(y^)−(1−y)log(1−y^)
注意,上式只是针对一个节点的计算公式。这一点一定要和单分类loss区分开来。
例子中可以计算为:
loss猫loss蛙loss鼠===−0×log(0.1)−(1−0)log(1−0.1)=−log(0.9)−1×log(0.7)−(1−1)log(1−0.7)=−log(0.7)−1×log(0.8)−(1−1)log(1−0.8)=−log(0.8)
loss猫=−0×log(0.1)−(1−0)log(1−0.1)=−log(0.9)loss蛙=−1×log(0.7)−(1−1)log(1−0.7)=−log(0.7)loss鼠=−1×log(0.8)−(1−1)log(1−0.8)=−log(0.8)
单张样本的loss即为loss=loss猫+loss蛙+loss鼠loss=loss猫+loss蛙+loss鼠
每一个batch的loss就是:
loss=∑j=1m∑i=1n−yjilog(yji^)−(1−yji)log(1−yji^)
loss=∑j=1m∑i=1n−yjilog(yji^)−(1−yji)log(1−yji^)
式中m为当前batch中的样本量,n为类别数。

总结
路漫漫,要学的东西还有很多啊。

参考:

https://www.zhihu.com/question/65288314/answer/244557337
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://jamesmccaffrey.wordpress.com/2013/11/05/why-you-should-use-cross-entropy-error-instead-of-classification-error-or-mean-squared-error-for-neural-network-classifier-training/
---------------------
作者:史丹利复合田
来源:CSDN
原文:https://blog.csdn.net/tsyccnh/article/details/79163834
版权声明:本文为博主原创文章,转载请附上博文链接!

原文地址:https://www.cnblogs.com/Arborday/p/10727147.html

时间: 2024-10-06 23:11:42

[转] 理解交叉熵在损失函数中的意义的相关文章

大白话5分钟带你走进人工智能-第十八节逻辑回归之交叉熵损失函数梯度求解过程(3)

                                               第十八节逻辑回归之交叉熵损失函数梯度求解过程(3) 上一节中,我们讲解了交叉熵损失函数的概念,目标是要找到使得损失函数最小的那组θ,也就是l(θ)最大,即预测出来的结果在训练集上全部正确的概率最大.那我们怎么样找到我们的最优解呢?上节中提出用梯度下降法求解,本节的话我们对其具体细节展开. 先来看下我们用梯度下降求解最优解,想要通过梯度下降优化L(θ)到最小值需要几步? 第一步,随机产生w,随机到0附近会

均方误差和交叉熵损失函数比较

一.前言 在做神经网络的训练学习过程中,一开始,经常是喜欢用二次代价函数来做损失函数,因为比较通俗易懂,后面在大部分的项目实践中却很少用到二次代价函数作为损失函数,而是用交叉熵作为损失函数.为什么?一直在思考这个问题,这两者有什么区别,那个更好?下面通过数学的角度来解释下. 思考:我们希望我们损失函数能够做到,当我们预测的值跟目标值越远时,在修改参数时候,减去一个更大的值,做到更加快速的下降. 二.两种代价函数的表达式 二次代价损失函数: 交叉熵损失函数: 针对二分类来说,其中: ai第Xi个样

交叉熵损失函数

交叉熵损失是分类任务中的常用损失函数,但是是否注意到二分类与多分类情况下的交叉熵形式上的不同呢? 两种形式 这两个都是交叉熵损失函数,但是看起来长的却有天壤之别.为什么同是交叉熵损失函数,长的却不一样? 因为这两个交叉熵损失函数对应不同的最后一层的输出:第一个对应的最后一层是softmax,第二个对应的最后一层是sigmoid 先来看下信息论中交叉熵的形式 交叉熵是用来描述两个分布的距离的,神经网络训练的目的就是使 g(x) 逼近 p(x). softmax层的交叉熵 (x)是什么呢?就是最后一

损失函数——均方误差和交叉熵

1.MSE(均方误差) MSE是指真实值与预测值(估计值)差平方的期望,计算公式如下: MSE = 1/m (Σ(ym-y'm)2),所得结果越大,表明预测效果越差,即y和y'相差越大 y = tf.constant([1,2,3,0,2]) y = tf.one_hot(y,depth=4) y = tf.cast(y,dtype=tf.float32) out = tf.random.normal([5,4]) # MSE标准定义方式 loss1 = tf.reduce_mean(tf.sq

交叉熵

http://www.cnblogs.com/ljy2013/p/6432269.html 作者:Noriko Oshima链接:https://www.zhihu.com/question/41252833/answer/108777563来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 熵的本质是香农信息量()的期望. 现有关于样本集的2个概率分布p和q,其中p为真实分布,q非真实分布.按照真实分布p来衡量识别一个样本的所需要的编码长度的期望(即平均编码长度)为

如何通俗的解释交叉熵与相对熵

[From] https://www.zhihu.com/question/41252833/answer/108777563 熵的本质是香农信息量()的期望. 现有关于样本集的2个概率分布p和q,其中p为真实分布,q非真实分布.按照真实分布p来衡量识别一个样本的所需要的编码长度的期望(即平均编码长度)为:H(p)=.如果使用错误分布q来表示来自真实分布p的平均编码长度,则应该是:H(p,q)=.因为用q来编码的样本来自分布p,所以期望H(p,q)中概率是p(i).H(p,q)我们称之为"交叉熵

交叉熵 相关链接

TensorFlow四种Cross Entropy算法实现和应用 对比两个函数tf.nn.softmax_cross_entropy_with_logits和tf.nn.sparse_softmax_cross_entropy_with_logits 从神经网络视角看均方误差与交叉熵作为损失函数时的共同点 交叉熵代价函数 交叉熵代价函数(损失函数)及其求导推导 简单易懂的softmax交叉熵损失函数求导 如何通俗的解释交叉熵与相对熵? https://www.cnblogs.com/virede

谈谈交叉熵损失函数

一.交叉熵损失函数形式 现在给出三种交叉熵损失函数的形式,来思考下分别表示的的什么含义. --式子1 --式子2 --式子3 解释下符号,m为样本的个数,C为类别个数.上面三个式子都可以作为神经网络的损失函数作为训练,那么区别是什么? ■1>式子1,用于那些类别之间互斥(如:一张图片中只能保护猫或者狗的其中一个)的单任务分类中.连接的 softmax层之后的概率分布. tensorflow中的函数为:  tf.nn.softmax_cross_entropy_with_logits ■2>式子

softmax交叉熵损失函数求导

来源:https://www.jianshu.com/p/c02a1fbffad6 简单易懂的softmax交叉熵损失函数求导 来写一个softmax求导的推导过程,不仅可以给自己理清思路,还可以造福大众,岂不美哉~ softmax经常被添加在分类任务的神经网络中的输出层,神经网络的反向传播中关键的步骤就是求导,从这个过程也可以更深刻地理解反向传播的过程,还可以对梯度传播的问题有更多的思考. softmax 函数 softmax(柔性最大值)函数,一般在神经网络中, softmax可以作为分类任