转自:https://blog.csdn.net/tsyccnh/article/details/79163834
关于交叉熵在loss函数中使用的理解
交叉熵(cross entropy)是深度学习中常用的一个概念,一般用来求目标与预测值之间的差距。以前做一些分类问题的时候,没有过多的注意,直接调用现成的库,用起来也比较方便。最近开始研究起对抗生成网络(GANs),用到了交叉熵,发现自己对交叉熵的理解有些模糊,不够深入。遂花了几天的时间从头梳理了一下相关知识点,才算透彻的理解了,特地记录下来,以便日后查阅。
信息论
交叉熵是信息论中的一个概念,要想了解交叉熵的本质,需要先从最基本的概念讲起。
1 信息量
首先是信息量。假设我们听到了两件事,分别如下:
事件A:巴西队进入了2018世界杯决赛圈。
事件B:中国队进入了2018世界杯决赛圈。
仅凭直觉来说,显而易见事件B的信息量比事件A的信息量要大。究其原因,是因为事件A发生的概率很大,事件B发生的概率很小。所以当越不可能的事件发生了,我们获取到的信息量就越大。越可能发生的事件发生了,我们获取到的信息量就越小。那么信息量应该和事件发生的概率有关。
假设XX是一个离散型随机变量,其取值集合为χχ,概率分布函数p(x)=Pr(X=x),x∈χp(x)=Pr(X=x),x∈χ,则定义事件X=x0X=x0的信息量为:
I(x0)=−log(p(x0))
I(x0)=−log(p(x0))
由于是概率所以p(x0)p(x0)的取值范围是[0,1][0,1],绘制为图形如下:
可见该函数符合我们对信息量的直觉
2 熵
考虑另一个问题,对于某个事件,有nn种可能性,每一种可能性都有一个概率p(xi)p(xi)
这样就可以计算出某一种可能性的信息量。举一个例子,假设你拿出了你的电脑,按下开关,会有三种可能性,下表列出了每一种可能的概率及其对应的信息量
序号 事件 概率p 信息量I
A 电脑正常开机 0.7 -log(p(A))=0.36
B 电脑无法开机 0.2 -log(p(B))=1.61
C 电脑爆炸了 0.1 -log(p(C))=2.30
注:文中的对数均为自然对数
我们现在有了信息量的定义,而熵用来表示所有信息量的期望,即:
H(X)=−∑i=1np(xi)log(p(xi))
H(X)=−∑i=1np(xi)log(p(xi))
其中n代表所有的n种可能性,所以上面的问题结果就是
H(X)===−[p(A)log(p(A))+p(B)log(p(B))+p(C))log(p(C))]0.7×0.36+0.2×1.61+0.1×2.300.804
H(X)=−[p(A)log(p(A))+p(B)log(p(B))+p(C))log(p(C))]=0.7×0.36+0.2×1.61+0.1×2.30=0.804
然而有一类比较特殊的问题,比如投掷硬币只有两种可能,字朝上或花朝上。买彩票只有两种可能,中奖或不中奖。我们称之为0-1分布问题(二项分布的特例),对于这类问题,熵的计算方法可以简化为如下算式:
H(X)==−∑i=1np(xi)log(p(xi))−p(x)log(p(x))−(1−p(x))log(1−p(x))
H(X)=−∑i=1np(xi)log(p(xi))=−p(x)log(p(x))−(1−p(x))log(1−p(x))
3 相对熵(KL散度)
相对熵又称KL散度,如果我们对于同一个随机变量 x 有两个单独的概率分布 P(x) 和 Q(x),我们可以使用 KL 散度(Kullback-Leibler (KL) divergence)来衡量这两个分布的差异
维基百科对相对熵的定义
In the context of machine learning, DKL(P‖Q) is often called the information gain achieved if P is used instead of Q.
即如果用P来描述目标问题,而不是用Q来描述目标问题,得到的信息增量。
在机器学习中,P往往用来表示样本的真实分布,比如[1,0,0]表示当前样本属于第一类。Q用来表示模型所预测的分布,比如[0.7,0.2,0.1]
直观的理解就是如果用P来描述样本,那么就非常完美。而用Q来描述样本,虽然可以大致描述,但是不是那么的完美,信息量不足,需要额外的一些“信息增量”才能达到和P一样完美的描述。如果我们的Q通过反复训练,也能完美的描述样本,那么就不再需要额外的“信息增量”,Q等价于P。
KL散度的计算公式:
DKL(p||q)=∑i=1np(xi)log(p(xi)q(xi))(3.1)
(3.1)DKL(p||q)=∑i=1np(xi)log(p(xi)q(xi))
n为事件的所有可能性。
DKLDKL的值越小,表示q分布和p分布越接近
4 交叉熵
对式3.1变形可以得到:
DKL(p||q)==∑i=1np(xi)log(p(xi))−∑i=1np(xi)log(q(xi))−H(p(x))+[−∑i=1np(xi)log(q(xi))]
DKL(p||q)=∑i=1np(xi)log(p(xi))−∑i=1np(xi)log(q(xi))=−H(p(x))+[−∑i=1np(xi)log(q(xi))]
等式的前一部分恰巧就是p的熵,等式的后一部分,就是交叉熵:
H(p,q)=−∑i=1np(xi)log(q(xi))
H(p,q)=−∑i=1np(xi)log(q(xi))
在机器学习中,我们需要评估label和predicts之间的差距,使用KL散度刚刚好,即DKL(y||y? )DKL(y||y^),由于KL散度中的前一部分−H(y)−H(y)不变,故在优化过程中,只需要关注交叉熵就可以了。所以一般在机器学习中直接用用交叉熵做loss,评估模型。
机器学习中交叉熵的应用
1 为什么要用交叉熵做loss函数?
在线性回归问题中,常常使用MSE(Mean Squared Error)作为loss函数,比如:
loss=12m∑i=1m(yi−yi^)2
loss=12m∑i=1m(yi−yi^)2
这里的m表示m个样本的,loss为m个样本的loss均值。
MSE在线性回归问题中比较好用,那么在逻辑分类问题中还是如此么?
2 交叉熵在单分类问题中的使用
这里的单类别是指,每一张图像样本只能有一个类别,比如只能是狗或只能是猫。
交叉熵在单分类问题上基本是标配的方法
loss=−∑i=1nyilog(yi^)(2.1)
(2.1)loss=−∑i=1nyilog(yi^)
上式为一张样本的loss计算方法。式2.1中n代表着n种类别。
举例说明,比如有如下样本
对应的标签和预测值
* 猫 青蛙 老鼠
Label 0 1 0
Pred 0.3 0.6 0.1
那么
loss==−(0×log(0.3)+1×log(0.6)+0×log(0.1)−log(0.6)
loss=−(0×log(0.3)+1×log(0.6)+0×log(0.1)=−log(0.6)
对应一个batch的loss就是
loss=−1m∑j=1m∑i=1nyjilog(yji^)
loss=−1m∑j=1m∑i=1nyjilog(yji^)
m为当前batch的样本数
3 交叉熵在多分类问题中的使用
这里的多类别是指,每一张图像样本可以有多个类别,比如同时包含一只猫和一只狗
和单分类问题的标签不同,多分类的标签是n-hot。
比如下面这张样本图,即有青蛙,又有老鼠,所以是一个多分类问题
对应的标签和预测值
* 猫 青蛙 老鼠
Label 0 1 1
Pred 0.1 0.7 0.8
值得注意的是,这里的Pred不再是通过softmax计算的了,这里采用的是sigmoid。将每一个节点的输出归一化到[0,1]之间。所有Pred值的和也不再为1。换句话说,就是每一个Label都是独立分布的,相互之间没有影响。所以交叉熵在这里是单独对每一个节点进行计算,每一个节点只有两种可能值,所以是一个二项分布。前面说过对于二项分布这种特殊的分布,熵的计算可以进行简化。
同样的,交叉熵的计算也可以简化,即
loss=−ylog(y? )−(1−y)log(1−y? )
loss=−ylog(y^)−(1−y)log(1−y^)
注意,上式只是针对一个节点的计算公式。这一点一定要和单分类loss区分开来。
例子中可以计算为:
loss猫loss蛙loss鼠===−0×log(0.1)−(1−0)log(1−0.1)=−log(0.9)−1×log(0.7)−(1−1)log(1−0.7)=−log(0.7)−1×log(0.8)−(1−1)log(1−0.8)=−log(0.8)
loss猫=−0×log(0.1)−(1−0)log(1−0.1)=−log(0.9)loss蛙=−1×log(0.7)−(1−1)log(1−0.7)=−log(0.7)loss鼠=−1×log(0.8)−(1−1)log(1−0.8)=−log(0.8)
单张样本的loss即为loss=loss猫+loss蛙+loss鼠loss=loss猫+loss蛙+loss鼠
每一个batch的loss就是:
loss=∑j=1m∑i=1n−yjilog(yji^)−(1−yji)log(1−yji^)
loss=∑j=1m∑i=1n−yjilog(yji^)−(1−yji)log(1−yji^)
式中m为当前batch中的样本量,n为类别数。
总结
路漫漫,要学的东西还有很多啊。
参考:
https://www.zhihu.com/question/65288314/answer/244557337
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://jamesmccaffrey.wordpress.com/2013/11/05/why-you-should-use-cross-entropy-error-instead-of-classification-error-or-mean-squared-error-for-neural-network-classifier-training/
---------------------
作者:史丹利复合田
来源:CSDN
原文:https://blog.csdn.net/tsyccnh/article/details/79163834
版权声明:本文为博主原创文章,转载请附上博文链接!
原文地址:https://www.cnblogs.com/Arborday/p/10727147.html