解决问题:使用pandas中DataFrame如何使用条件选择某行

初始化

data = {‘db‘:[‘my‘,‘my‘,‘my‘,‘dm‘,‘dm‘,‘dm‘],‘table‘:[‘s‘,‘cs‘,‘c‘,‘book‘,‘order‘,‘cus‘]}

>>> data = DataFrame(data)

>>> data

   db  table
0  my      s
1  my     cs
2  my      c
3  dm   book
4  dm  order
5  dm    cus

  如果我想选择出‘db’ == ‘my’ 的所有行,操作如下:

data.loc[data[‘db‘]==‘my‘]

>>>#结果:
   db table
0  my     s
1  my    cs
2  my     c

  学会了吗,(~ ̄▽ ̄)~

原文地址:https://www.cnblogs.com/cola-1998/p/10803205.html

时间: 2024-10-07 23:16:38

解决问题:使用pandas中DataFrame如何使用条件选择某行的相关文章

pandas中DataFrame

python数据分析工具pandas中DataFrame和Series作为主要的数据结构. 本文主要是介绍如何对DataFrame数据进行操作并结合一个实例测试操作函数. 1)查看DataFrame数据及属性 df_obj = DataFrame() #创建DataFrame对象 df_obj.dtypes #查看各行的数据格式 df_obj['列名'].astype(int)#转换某列的数据类型 df_obj.head() #查看前几行的数据,默认前5行 df_obj.tail() #查看后几

pandas中DataFrame相关

1.创建 1.1  标准格式创建 DataFrame创建方法有很多,常用基本格式是:DataFrame 构造器参数:DataFrame(data=[],index=[],coloumns=[]) In [272]: df2=DataFrame(np.arange(16).reshape((4,4)),index=['a','b','c','d'],columns=['one','two','three','four']) In [273]: df2 Out[273]: one two three

Pandas中DataFrame数据合并、连接(concat、merge、join)之merge

二.merge:通过键拼接列 类似于关系型数据库的连接方式,可以根据一个或多个键将不同的DatFrame连接起来. 该函数的典型应用场景是,针对同一个主键存在两张不同字段的表,根据主键整合到一张表里面. merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=True, suffixes=('_x', '_y'), copy=Tr

pandas中DataFrame类的pivot_table函数------Reshaping by pivoting DataFrame objects

以下内容为截取自pandas官网的doc(请看这里),我做了一些翻译. Reshaping by pivoting DataFrame objects Data is often stored in CSV files or databases in so-called “stacked” or “record” format: In [1]: df Out[1]: date variable value 0 2000-01-03 A 0.469112 1 2000-01-04 A -0.282

pandas中DataFrame逐行读取的方法

1 2 3 4 5 6 import pandas as pd dict=[[1,2,3,4,5,6],[2,3,4,5,6,7],[3,4,5,6,7,8],[4,5,6,7,8,9],[5,6,7,8,9,10]] data=pd.DataFrame(dict) print(data) for indexs in data.index: print(data.loc[indexs].values[0:-1]) 实验结果: 0 1 2 3 4 5 0 1 2 3 4 5 6 1 2 3 4 5

Pandas中DataFrame数据合并、连接(concat、merge、join)之concat

一.concat:沿着一条轴,将多个对象堆叠到一起 concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True): objs:需要连接的对象集合,一般是列表或字典: axis:连接轴向: join:参数为'outer'或'inner': join_axes=[]:指定自定义的索

Pandas中DataFrame数据合并、连接(concat、merge、join)之join

pandas.DataFrame.join 自己弄了很久,一看官网.感觉自己宛如智障.不要脸了,直接抄 DataFrame.join(other, on=None, how='left', lsuffix='', rsuffix='', sort=False) Join columns with other DataFrame either on index or on a key column. Efficiently Join multiple DataFrame objects by in

压缩pandas中dataframe内存

从这里找的一个宝贝源码,可以大大缓解内存问题.https://www.kaggle.com/arjanso/reducing-dataframe-memory-size-by-65/code # @from: https://www.kaggle.com/arjanso/reducing-dataframe-memory-size-by-65/code # @liscense: Apache 2.0 # @author: weijian def reduce_mem_usage(props):

在DBGrid中,单击单元格选择整行,双击又可编辑单元格

在设计过程中,有时候数据较大量,field 较多的时候,只是点击单元格可能会对某个field的数据误操作(如数据错行),为此才会想到这个问题,解决办法如下:点击单元格就改当前行颜色. 首先DBGRID的属性做好下设置(其实也是DBGRID默认的属性) DBGrid1->Options->dgEditing=TrueDBGrid1->Options->dgRowSelect=False 一.先在implementation前做如下定义type  TMyDBGrid=class(TDB