【Spark-core学习之八】 SparkShuffle & Spark内存管理
环境
虚拟机:VMware 10
Linux版本:CentOS-6.5-x86_64
客户端:Xshell4
FTP:Xftp4
jdk1.8
scala-2.10.4(依赖jdk1.8)
spark-1.6
一、SparkShuffle
1. SparkShuffle概念
reduceByKey会将上一个RDD中的每一个key对应的所有value聚合成一个value,然后生成一个新的RDD,元素类型是<key,value>对的形式,这样每一个key对应一个聚合起来的value。问题:聚合之前,每一个key对应的value不一定都是在一个partition中,也不太可能在同一个节点上,因为RDD是分布式的弹性的数据集,RDD的partition极有可能分布在各个节点上。
如何聚合?两个过程:
–Shuffle Write:上一个stage的每个map task就必须保证将自己处理的当前分区的数据相同的key写入一个分区文件中,不同的key写入多个不同的分区文件中。
–Shuffle Read:reduce task就会从上一个stage的所有task所在的机器上寻找属于己的那些分区文件,这样就可以保证每一个key所对应的value都会汇聚到同一个节点上去处理和聚合。
Spark中有两种Shuffle类型,HashShuffle和SortShuffle,Spark1.2之前是HashShuffle默认的分区器是HashPartitioner,Spark1.2引入SortShuffle默认的分区器是RangePartitioner。
2. HashShuffle
1)普通机制
1.1)普通机制示意图
1.2)执行流程
a) 每一个map task将不同结果写到不同的buffer中,每个buffer的大小为32K。buffer起到数据缓存的作用。
b) 每个buffer文件最后对应一个磁盘小文件。
c) reduce task来拉取对应的磁盘小文件。
1.3)总结
①map task的计算结果会根据分区器(默认是hashPartitioner)来决定写入到哪一个磁盘小文件中去。ReduceTask会去Map端拉取相应的磁盘小文件。
②产生的磁盘小文件的个数:M(map task的个数)*R(reduce task的个数)
1.4)存在的问题
产生的磁盘小文件过多,会导致以下问题:
a) 在Shuffle Write过程中会产生很多写磁盘小文件的对象。
b) 在Shuffle Read过程中会产生很多读取磁盘小文件的对象。
c) 在JVM堆内存中对象过多会造成频繁的gc,gc还无法解决运行所需要的内存 的话,就会OOM。
d)在数据传输过程中会有频繁的网络通信,频繁的网络通信出现通信故障的可能性大大增加,一旦网络通信出现了故障会导致shuffle file cannot find 由于这个错误导致的task失败,TaskScheduler不负责重试,由DAGScheduler负责重试Stage。
2)合并机制(优化)
2.1)合并机制示意图
2.2)总结:产生磁盘小文件的个数:C(core的个数)*R(reduce的个数)
3、SortShuffle
1)普通机制
1.1)普通机制示意图
1.2)执行流程
a)map task 的计算结果会写入到一个内存数据结构里面,内存数据结构默认是5M
b)在shuffle的时候会有一个定时器,不定期的去估算这个内存结构的大小,当内存结构中的数据超过5M时,比如现在内存结构中的数据为5.01M,那么他会申请5.01*2-5=5.02M内存给内存数据结构。
c)如果申请成功不会进行溢写,如果申请不成功,这时候会发生溢写磁盘。
d)在溢写之前内存结构中的数据会进行排序分区
e)然后开始溢写磁盘,写磁盘是以batch的形式去写,一个batch是1万条数据,
f)map task执行完成后,会将这些磁盘小文件合并成一个大的磁盘文件,同时生成一个索引文件。
g)reduce task去map端拉取数据的时候,首先解析索引文件,根据索引文件再去拉取对应的数据。
1.3)总结
产生磁盘小文件的个数:2*M(map task的个数)
2)bypass机制(适用于不需要排序的场景)
2.1)bypass机制示意图
2.2)总结
①bypass运行机制的触发条件如下:
shuffle reduce task的数量小于spark.shuffle.sort.bypassMergeThreshold的参数值。这个值默认是200。
②产生的磁盘小文件为:2*M(map task的个数)
4、Shuffle文件寻址
1)MapOutputTracker
MapOutputTracker是Spark架构中的一个模块,是一个主从架构。管理磁盘小文件的地址。
MapOutputTrackerMaster是主对象,存在于Driver中。MapOutputTrackerWorker是从对象,存在于Excutor中。
2)BlockManager
BlockManager块管理者,是Spark架构中的一个模块,也是一个主从架构。
BlockManagerMaster,主对象,存在于Driver中。BlockManagerMaster会在集群中有用到广播变量和缓存数据或者删除缓存数据的时候,通知BlockManagerSlave传输或者删除数据。
BlockManagerWorker,从对象,存在于Excutor中。
BlockManagerWorker会与BlockManagerWorker之间通信。
无论在Driver端的BlockManager还是在Excutor端的BlockManager都含有四个对象:
①DiskStore:负责磁盘的管理。
②MemoryStore:负责内存的管理。
③ConnectionManager:负责连接其他的BlockManagerWorker。
④BlockTransferService:负责数据的传输。
3)Shuffle文件寻址图
4)Shuffle文件寻址流程
a)当map task执行完成后,会将task的执行情况和磁盘小文件的地址封装到MpStatus对象中,通过MapOutputTrackerWorker对象向Driver中的MapOutputTrackerMaster汇报。
b)在所有的map task执行完毕后,Driver中就掌握了所有的磁盘小文件的地址。
c)在reduce task执行之前,会通过Excutor中MapOutPutTrackerWorker向Driver端的MapOutputTrackerMaster获取磁盘小文件的地址。
d) 获取到磁盘小文件的地址后,会通过BlockManager中的ConnectionManager连接数据所在节点上的ConnectionManager,然后通过BlockTransferService进行数据的传输。
e)BlockTransferService默认启动5个task去节点拉取数据。默认情况下,5个task拉取数据量不能超过48M。
参考:
原文地址:https://www.cnblogs.com/cac2020/p/10681662.html