struct ifreq结构体与ip,子网掩码,网关等信息

总结一下,今天学习的关于通过socket,ioctl来获得ip,netmask等信息,其中很多内容参照了很多网上的信息,我会一一列出的

我用的这个函数,就是下面这个函数,其中的有一些全局变量,很好懂,也就不多做解释了
一。下面对这个函数进行注解一下:

int get_nic_IP_Address()//获取各网卡IP地址、子网掩码
{
 struct ifreq ifreq;  //声明一个struct ifreq结构体(这个结构体中有很多重要的参数,具体可以参照第二的补充)
   int sock;
 int i;
 int tmpint;
 read_dev(); //这个函数的功能是获得网卡名字(保存在下面提到的sys_nic_ip[][]数组中)并计算网卡总数(就是下面的sys_nic_count)

for (i=0;i<sys_nic_count;i++)
 {
     if((sock=socket(AF_INET,SOCK_STREAM,0))<0){  //建立一个套接字
         perror("socket");
         return ;
        }
     strcpy(ifreq.ifr_name,sys_nic_name[i]);   //把网卡名字复制到ifreq结构体中的name变量(感觉这个地方是必须的)
     if(ioctl(sock,SIOCGIFADDR,&ifreq)<0) {   //这里涉及ioctl函数对于网络文件的控制(下面会介绍)
       sprintf(sys_nic_ip[i],"Not set");
     } else {
       sprintf(sys_nic_ip[i],"%d.%d.%d.%d",      //把ip地址提取出来,保存(理解一下socketaddr_in和socketaddr的关系)
       (unsigned char)ifreq.ifr_addr.sa_data[2],
       (unsigned char)ifreq.ifr_addr.sa_data[3],
       (unsigned char)ifreq.ifr_addr.sa_data[4],
       (unsigned char)ifreq.ifr_addr.sa_data[5]);
     }
     if(ioctl(sock,SIOCGIFNETMASK,&ifreq)<0) {  //我的理解是这个地方用SIOCGIFNETMASK,那么ifreq中原本是存的ip地址,现在存成了子网掩码了。。
       sprintf(sys_nic_mask[i],"Not set");       //把子网掩码提取出来(但得到的只是超网的划分方式就是/xx)
     } else {
       sprintf(sys_nic_mask[i],"%d",
       Count((unsigned char)ifreq.ifr_netmask.sa_data[2])+
       Count((unsigned char)ifreq.ifr_netmask.sa_data[3])+
       Count((unsigned char)ifreq.ifr_netmask.sa_data[4])+
       Count((unsigned char)ifreq.ifr_netmask.sa_data[5]));
       
     }
 }
}
列出上面最后调用函数(Count())和一些全副变量:
char sys_nic_ip[20][20];//各网卡IP
char sys_nic_mask[20][20];//各网卡子网掩码"/xx"

int countTable[256] =
{
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
};
int Count(int v)

  return countTable[v]; 
}
应该理解了吧。。。挺经典的。。。不过网上的貌似就有一个版本。。。很是气恼

二。对涉及的知识点进行补充

1.struct ifreq {
    char ifr_name[IFNAMSIZ];
     union
      {
        struct sockaddr ifru_addr;
        struct sockaddr ifru_dstaddr;
        struct sockaddr ifru_broadaddr;
        struct sockaddr ifru_netmask;
        struct sockaddr ifru_hwaddr;
        short int ifru_flags;
        int ifru_ivalue;
        int ifru_mtu;
        struct ifmap ifru_map;
        char ifru_slave[IFNAMSIZ]; /* Just fits the size */
        char ifru_newname[IFNAMSIZ];
        __caddr_t ifru_data;
      } ifr_ifru;
};

# define ifr_name ifr_ifrn.ifrn_name /* interface name */
# define ifr_hwaddr ifr_ifru.ifru_hwaddr /* MAC address */
# define ifr_addr ifr_ifru.ifru_addr /* address */
# define ifr_dstaddr ifr_ifru.ifru_dstaddr /* other end of p-p lnk */
# define ifr_broadaddr ifr_ifru.ifru_broadaddr /* broadcast address */
# define ifr_netmask ifr_ifru.ifru_netmask /* interface net mask */
# define ifr_flags ifr_ifru.ifru_flags /* flags */
# define ifr_metric ifr_ifru.ifru_ivalue /* metric */
# define ifr_mtu ifr_ifru.ifru_mtu /* mtu */
# define ifr_map ifr_ifru.ifru_map /* device map */
# define ifr_slave ifr_ifru.ifru_slave /* slave device */
# define ifr_data ifr_ifru.ifru_data /* for use by interface */
# define ifr_ifindex ifr_ifru.ifru_ivalue /* interface index */
# define ifr_bandwidth ifr_ifru.ifru_ivalue /* link bandwidth */
# define ifr_qlen ifr_ifru.ifru_ivalue /* queue length */
# define ifr_newname ifr_ifru.ifru_newname /* New name */
# define _IOT_ifreq _IOT(_IOTS(char),IFNAMSIZ,_IOTS(char),16,0,0)
# define _IOT_ifreq_short _IOT(_IOTS(char),IFNAMSIZ,_IOTS(short),1,0,0)
# define _IOT_ifreq_int _IOT(_IOTS(char),IFNAMSIZ,_IOTS(int),1,0,0)

2.ioctl 函数 (在网络中的作用)
关于这个网络相关的请求,就是ioctl在这里面起的作用和各个参数的作用。。。可以参照这个网页,讲解的很详细:
http://www.iteye.com/topic/309442
本例中用的2个ioctl控制函数。。上面已经解释很清楚了

3.关于socketaddr_in和socketaddr的关系,下面贴出具体的定义:
struct sockaddr_in 

short int sin_family; /* 地址族 */ 
unsigned short int sin_port; /* 端口号 */ 
struct in_addr sin_addr; /* IP地址 */ 
unsigned char sin_zero[8]; /* 填充0 以保持与struct sockaddr同样大小 */ 
};

struct sockaddr 

unsigned short sa_family; /* 地址族, AF_xxx */ 
char sa_data[14]; /* 14 字节的协议地址 */ 
};

比较一下,会发现长度一样,所以这2个可以通用的,不过要进行类型转换,比较一下就得出了为什么上面程序中可以用:
(unsigned char)ifreq.ifr_addr.sa_data[2],这种形式了,还是解释一下吧:这个ifr_addr是一个struct sockaddr结构体。它其中的sa_date[2]是不是照着上面sockaddr_in中的sin_add(也就是ip地址呢),该明白了吧。。。。

总结:通过这个函数,可以很好的理解怎么得到ip和子网掩码的过程。。。。

时间: 2024-08-09 10:29:54

struct ifreq结构体与ip,子网掩码,网关等信息的相关文章

struct sk_buff结构体详解

struct sk_buff是linux网络系统中的核心结构体,linux网络中的所有数据包的封装以及解封装都是在这个结构体的基础上进行. struct sk_buff_head  {     struct sk_buff *next;     struct sk_buff *prev;          __u32 qlen;     spinlock_t lock; } struct sk_buff {     struct sk_buff *next;     struct sk_buff

struct ethhdr结构体详解

    在linux系统中,使用struct ethhdr结构体来表示以太网帧的头部.这个struct ethhdr结构体位于#include<linux/if_ether.h>之中. #define ETH_ALEN 6  //定义了以太网接口的MAC地址的长度为6个字节 #define ETH_HLAN 14  //定义了以太网帧的头长度为14个字节 #define ETH_ZLEN 60  //定义了以太网帧的最小长度为 ETH_ZLEN + ETH_FCS_LEN = 64个字节 #d

struct socket结构体详解

在内核中为什么要有struct socket结构体呢?    struct socket结构体的作用是什么?    下面这个图,我觉得可以回答以上两个问题.      由这个图可知,内核中的进程可以通过使用struct socket结构体来访问linux内核中的网络系统中的传输层.网络层.数据链路层.也可以说struct socket是内核中的进程与内核中的网路系统的桥梁.   struct socket {      socket_state  state; // socket state  

struct in_addr 结构体

struct in_addr 结构体: struct in_addr { in_addr_t s_addr; }; 表示一个32位的IPv4地址. in_addr_t一般为32位的unsigned int,其字节顺序为网络字节序,即该无符号数采用大端字节序.其中每8位表示一个IP地址中的一个数值. 打印的时候可以调用inet_ntoa()函数将其转换为char*类型. 头文件为:#include <arpa/inet.h> inet--ntoa()函数用于将一个十进制网络字节序转换为点分十进制

struct list_head结构体及相关函数

struct list_head结构体是linux实现数据结构双向链表的基础.其定义: struct list_head { struct list_head *next, *prev; }; 可见链表里面的成员还是链表,每个链表都指向了前面和后面的链表. 一般将struct list_head作为一个成员,放到一个结构体中,其作用是可以从当前的结构体指针,获取到下一个链表元素的地址.一般用list_entry()来实现.具体按照下面的链接: http://www.cnblogs.com/bas

linux内核中的struct rlimit结构体详解

   在linux内核中,对一个进程获取系统资源的数量进行了限制.那么linux内核是如何实现这种对一个进程的各种资源的限制呢?    linux使用struct rlimit结构体来实现的,rlimit是 resource limit的缩写.    struct rlimit           {               unsigned int rlim_cur;  /* soft limit */               unsigned int rlim_max;  /* ha

typedef struct与struct定义结构体

今天在定义结构体的时候发现typedef struct与struct定义结构体有一些不同之处: 结构也是一种数据类型, 可以使用结构变量, 因此,  象其它 类型的变量一样, 在使用结构变量时要先对其定义. 定义结构变量的一般格式为: struct 结构名 { 类型  变量名; 类型  变量名; ... } 结构变量; 结构名是结构的标识符不是变量名. 另一种常用格式为: typedef struct 结构名 { 类型  变量名; 类型  变量名; ... } 结构别名; 另外注意:  在C中,

Linux中ifreq 结构体分析和使用 及其在项目中的简单应用

[基础知识说明] 结构原型: /* * Interface request structure used for socket * ioctl's.  All interface ioctl's must have parameter * definitions which begin with ifr_name.  The * remainder may be interface specific. */ struct ifreq {#define IFHWADDRLEN 6 union { 

Linux中ifreq 结构体分析和使用

结构原型: struct ifreq{#define IFHWADDRLEN 6 union {  char ifrn_name[IFNAMSIZ];   } ifr_ifrn;  union {  struct sockaddr ifru_addr;  struct sockaddr ifru_dstaddr;  struct sockaddr ifru_broadaddr;  struct sockaddr ifru_netmask;  struct  sockaddr ifru_hwadd