逻辑回归

1.线性回归

我们用 X1, X2..Xn 去描述 feature 里面的分量,比如 x1=房间的面积, x2=房间的朝向,等等,我们可以做出一个估计函数

评论此估计函数的参数是否好,采用损失函数,即对于m次的估计值和真实值的差的平方和求和,然后乘1/2是为了简化计算。

如何取参数,使得估计函数 最小。可以采用最小二乘法,和梯度下降法。

偏导:导数就是函数的变化率,偏导数反映的是函数沿坐标轴正方向的变化率,几何意义是表示固定面上一点的切线斜率。

相关书籍

时间: 2024-10-13 04:55:39

逻辑回归的相关文章

机器学习—逻辑回归理论简介

下面是转载的内容,主要是介绍逻辑回归的理论知识,先总结一下自己看完的心得 简单来说线性回归就是直接将特征值和其对应的概率进行相乘得到一个结果,逻辑回归则是这样的结果上加上一个逻辑函数 这里选用的就是Sigmoid函数,在坐标尺度很大的情况下类似于阶跃函数 在确认特征对应的权重值也就是回归系数的时候 最常用的方法是最大似然法,EM参数估计,这个是在一阶导数能够有解的前提下 如果一阶导数无法求得解析值,那么一般选取梯度上升法,通过有限次的迭代过程,结合代价函数更新回归系数至收敛 //////////

从另一个视角看待逻辑回归

摘要 逻辑回归是用在分类问题中,而分类为题有存在两个比较大的方向:分类的结果用数值表是,比如1和0(逻辑回归采用的是这种),或者-1和1(svm采用的),还有一种是以概率的形式来反应,通过概率来说明此样本要一个类的程度即概率.同时分类问题通过适用的场合可以分为:离散和连续,其中决策树分类,贝叶斯分类都是适用离散场景,但是连续场景也可以处理,只是处理起来比较麻烦,而逻辑回归就是用在连续特征空间中的,并把特征空间中的超平面的求解转化为概率进行求解,然后通过概率的形式来找给出分类信息,最后设置一个阈值

逻辑回归算法

使用线性模型进行回归学习,但若要做分类任务该怎么办呢?答案蕴含在广义线性模型中:只需要找一个单调可微的函数将分类任务的真实标记y与线性回归模型的预测值联系起来. 对数几率函数是一个常用的替代函数: 该函数的图像如下图(来源:维基百科): 对数几率函数又称作"sigmoid函数",将z值转化为一个接近0或1的y值. 二.逻辑会回参数求解过程 三.Logistic Regression的适用性 1) 可用于概率预测,也可用于分类. 并不是所有的机器学习方法都可以做可能性概率预测(比如SVM

机器学习-逻辑回归

(整理的简单,公式也没使用公式编辑器.) 对于数据集D={(x1,y1),(x2,y2),...,{xn,yn}} ,而xi= {xi1,xi2,...,xim} 代表m维 . 在线性回归中,我们想学习一个线性的函数 f(x) = w1*x1+w2*x2+w3*x3+...+wm*xm+b . 向量形式 f(X) = Wt*X +b  其中Wt 是W 向量的转置.其可能值范围是(-oo,+oo). 对于二分类任务,其类别标记为y={0,1},  需要将范围取到(0,1),就使用sigmoid函数

逻辑回归损失函数3D图

在学习逻辑回归的过程中,通过3D图像可以直接观察损失函数的收敛速度,对自行确定学习速率提供参考 损失函数公式: Octave程序如下: tx = linspace(100,-30,1000); %θ和X看做一个共同参数ty = round(unifrnd(0,1,1,1000));% y的值仅仅为0或1,随机生成1000个m=length(tx);[xx, yy] = meshgrid (tx, ty);tz = -1 *( yy* log( sigmoid(xx) ) + (1 - yy )

机器学习之逻辑回归

2. 逻辑回归 简述 Logistic回归算法基于Sigmoid函数,或者说Sigmoid就是逻辑回归函数.Sigmoid函数定义如下: 11+e?z.函数值域范围(0,1). 因此逻辑回归函数的表达式如下: hθ(x)=g(θTX)=11+e?θTX其中,g(z)=11+e?z 其导数形式为: g′(z)=ddz11+e?z=1(1+e?z)2(e?z)=11+e?z(1?11+e?z)=g(z)(1?g(z)) 代价函数 逻辑回归方法主要是用最大似然估计来学习的,所以单个样本的后验概率为:

逻辑回归原理小结

逻辑回归是一个分类算法,它可以处理二元分类以及多元分类.虽然它名字里面有"回归"两个字,却不是一个回归算法.那为什么有"回归"这个误导性的词呢?个人认为,虽然逻辑回归是分类模型,但是它的原理里面却残留着回归模型的影子,本文对逻辑回归原理做一个总结. 1. 从线性回归到逻辑回归 我们知道,线性回归的模型是求出输出特征向量Y和输入样本矩阵X之间的线性关系系数\(\theta\),满足\(\mathbf{Y = X\theta}\).此时我们的Y是连续的,所以是回归模型.

Stanford大学机器学习公开课(三):局部加权回归、最小二乘的概率解释、逻辑回归、感知器算法

(一)局部加权回归 通常情况下的线性拟合不能很好地预测所有的值,因为它容易导致欠拟合(under fitting).如下图的左图.而多项式拟合能拟合所有数据,但是在预测新样本的时候又会变得很糟糕,因为它导致数据的 过拟合(overfitting),不符合数据真实的模型.如下图的右图. 下面来讲一种非参数学习方法——局部加权回归(LWR).为什么局部加权回归叫做非参数学习方法呢?首先,参数学习方法是这样一种方法:在训练完成所有数据后得到一系列训练参数,然后根据训练参数来预测新样本的值,这时不再依赖

统计学习方法 李航---第6章 逻辑回归与最大熵模型

第6章 逻辑回归与最大熵模型 逻辑回归(logistic regression)是统计学习中的经典分类方法.最大嫡是概率模型学习的一个准则将其推广到分类问题得到最大熵模型(maximum entropy model).逻辑回归模型与最大熵模型都属于对数线性模型. 6.1 逻辑回归模型 定义6.1(逻辑分布):设X是连续随机变量,X服从逻辑斯谛分布是指 X具有下列分布函数和密度函数 式中,u为位置参数,r>0为形状参数. 逻辑分布的密度函数f(x)和分布函数F(x)的图形如图所示.分布函数属于逻辑

逻辑回归 & 递归下降算法

0)递归下降算法的目的是通过不断迭代,逼近函数的最小值,从而求出参数 1)逻辑回归实际上是一个分类器, 利用已有的样本来训练 sigmoid 函数 (1) sigmoid 函数的一般形式: (2) sigmoid 函数的图形: (3) 预测函数 : 比如说有一个样本x, 他有10个 features : ,根据可以得到他们的预测函数的值:    那么就可以知道样本X 的归属 :  是一类, 否则是另一类. 注意:这里假设线性边界情况 : 即形如 , 而不会是  这种.而且推导也是基于这个假设的.