Statistical Models and Social Science

1.1 Statistical Models and Social Reality

KEY:

  1. complex society v.s statistical models
  2. relationship,data,descriptive accuracy

With few exceptions, statistical data analysis describes the outcomes of real social processes
and not the processes themselves. It is therefore important to attend to the descriptive
accuracy of statistical models and to refrain from reifying them.

1.2 Observation and Experiment

KEY:

  1. causal model
  2. spurious v.s causal

Causal inferences are most certain—if not completely definitive—in randomized experiments,
but observational data can also be reasonably marshaled as evidence of causation.
Good experimental practice seeks to avoid confounding experimentally manipulated explanatory
variables with other variables that can influence the response variable. Sound analysis
of observational data seeks to control statistically for potentially confounding variables.

In analyzing observational data, it is important to distinguish between a variable that is a
common prior cause of an explanatory and response variable and a variable that intervenes
causally between the two.

It is overly restrictive to limit the notion of statistical causation to explanatory variables
that are manipulated experimentally, to explanatory variables that are manipulable in
principle, or to data that are collected over time.

1.3 Populations and Samples

KEY:

  1. prototypical experiment

Randomization and good sampling design are desirable in social research, but they are
not prerequisites for drawing statistical inferences. Even when randomization or random
sampling is employed, we typically want to generalize beyond the strict bounds of statistical
inference.

时间: 2024-10-10 22:00:21

Statistical Models and Social Science的相关文章

2.6. Statistical Models, Supervised Learning and Function Approximation

Statical model regression $y_i=f_{\theta}(x_i)+\epsilon_i,E(\epsilon)=0$ 1.$\epsilon\sim N(0,\sigma^2)$ 2.使用最大似然估计$\rightarrow$最小二乘 $y\sim N(f_{\theta}(x),\sigma^2)$ $L(\theta)=-\frac{N}{2}log(2\pi)-Nlog\sigma -\frac{1}{2\sigma^2}\sum_i\left(y_i-f_{\

[zz]有哪些优秀的科学网站和科研软件推荐给研究生?

https://www.zhihu.com/question/37061410 如题,各位科研前辈,有没有一些好的科研网站或者适合科研人员用的软件以及APP,推荐给一只研一的菜鸡,帮助我们提高科研效率,了解更多知识.或者指点迷津,分享一些科研经验,让菜鸡少走弯路.欢迎分享,感激不尽!!! 6 条评论 分享 默认排序按时间排序 56 个回答 2230赞同反对,不会显示你的姓名 ljthyd食品科学.食品安全.食品加工话题优秀回答者 食品… 2230 人赞同 写几个常见的我觉得挺好的网站及软件,也不

Datasets for Data Mining and Data Science

From kdnuggets Data repositories AWS (Amazon Web Services) Public Data Sets, provides a centralized repository of public data sets that can be seamlessly integrated into AWS cloud-based applications. BigML big list of public data sources. Bioassay da

Brief introduction to Scala and Breeze for statistical computing

Brief introduction to Scala and Breeze for statistical computing 时间 2013-12-31 03:17:19  Darren Wilkinson's research blog 原文  http://darrenjw.wordpress.com/2013/12/30/brief-introduction-to-scala-and-breeze-for-statistical-computing/ 主题 Scala Introduc

2017年Nature文章“Millions of online book co-purchases reveal partisan differences in the consumption of science”阅读笔记

论文:      Millions of online book co-purchases reveal partisan differences in the consumption of science 发表期刊:Nature 2017 (Human Behavior) 作者:       Feng Shi, Yongren Shi, Fedor a. Dokshin, James a. evans and Michael W. Macy 单位:     Computation Instit

【转】APA攻略——写给困惑apa格式的同胞们

引用自:http://blog.sina.com.cn/s/blog_77dd91730100vofv.html 刚进乔治布朗的College English就有讲到MLA.APA等引用文书规格.教授们向来重视知识版权并再三强调涉嫌抄袭的严重性,所以在引用前人文章论点数据后都要好好地做reference/ work citied.以下就是系统性APA格式引用的介绍,值得学习.但如果记不下来也不用头痛,可以上网搜寻类似easybib的自动软件,输入网址或文章信息就能帮你形成格式直接复制到refer

舆情,文本挖掘

MLE,MAP,EM 和 point estimation 之间的关系是怎样的 和点估计相对应的是区间估计,这个一般入门的统计教材里都会讲.直观说,点估计一般就是要找概率密度曲线上值最大的那个点,区间估计则要寻找该曲线上满足某种条件的一个曲线段. 最大似然和最大后验是最常用的两种点估计方法.以最简单的扔硬币游戏为例,一枚硬币扔了五次,有一次是正面.用最大似然估计,就是以这五次结果为依据,判断这枚硬币每次落地时正面朝上的概率(期望值)是多少时,最有可能得到四次反面一次正面的结果.不难计算得到期望概

【深度学习Deep Learning】资料大全

转载:http://www.cnblogs.com/charlotte77/p/5485438.html 最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books Deep Learning66 by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by

{ICIP2014}{收录论文列表}

This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinci 10:30  ARS-L1.1—GROUP STRUCTURED DIRTY DICTIONARY LEARNING FOR CLASSIFICATION Yuanming Suo, Minh Dao, Trac Tran, Johns Hopkins University, USA; Hojj