神经网络rbf

clc;
clear;
close all;

ld=400; %定义学习样本的数量
x=rand(2,ld); %得到一个2 * 400的一个矩阵,每个元素在0-1之间
x=(x-0.5)*1.5*2; %-1.5, 1.5
x1=x(1,:); %得到矩阵的第1行
x2=x(2,:); %得到矩阵的第2行
F=20+x1.^2-10*cos(2*pi*x1)+x2.^2-10*cos(2*pi*x2); %定义样本输出

%训练网络
net=newrb(x,F);

%generate the testing data
interval=0.1;
[i, j]=meshgrid(-1.5:interval:1.5);
row=size(i);
tx1=i(:); %列矩阵
tx1=tx1‘; %变为行矩阵
tx2=j(:);
tx2=tx2‘;
tx=[tx1;tx2]; %2 * n的矩阵 ,作为测试网络的输入数据

%testing
ty=sim(net,tx); %调用网络,得到对应的输出结果
% 画出网络得到的结果
v=reshape(ty,row);
figure
subplot(1,3,2)
mesh(i,j,v);
zlim([0,60])

%plot the original function
interval=0.1;
[x1, x2]=meshgrid(-1.5:interval:1.5);
F = 20+x1.^2-10*cos(2*pi*x1)+x2.^2-10*cos(2*pi*x2);
subplot(1,3,1)
mesh(x1,x2,F);
zlim([0,60])

%plot the error
subplot(1,3,3)
mesh(x1,x2,F-v);
zlim([0,60])

时间: 2024-10-22 11:46:26

神经网络rbf的相关文章

RBF网络

华夏35度 Data Mining 径向基函数(RBF)神经网络 RBF网络能够逼近任意的非线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能力,并有很快的学习收敛速度,已成功应用于非线性函数逼近.时间序列分析.数据分类.模式识别.信息处理.图像处理.系统建模.控制和故障诊断等. 简单说明一下为什么RBF网络学习收敛得比较快.当网络的一个或多个可调参数(权值或阈值)对任何一个输出都有影响时,这样的网络称为全局逼近网络.由于对于每次输入,网络上的每一个权值都要调整,从而导致全局逼近网络的

人工神经网络(初识)

人工神经网络 人工神经网络,是模拟生物神经网络进行信息处理的一种数学模型,它对大脑的生理研究成果为基础,其目的在于模拟大脑的某些机理与机制,实现一些特定的功能 1943年, 美国心里学家和数学家联合提出了形式神经元的数学模型MP模型,证明了单个神经元能执行逻辑功能,开创了人工神经网络研究的时代.1957年,计算机科学家用硬件完成了最早的神经网络模型,即感知器,并用来模拟生物的感知和学习能力.1969年, M.Minsky等仔细分析了以感知器为代表的神经网络系统的功能及局限后,指出感知器不能解决高

R语言数据挖掘实战系列(5)

R语言数据挖掘实战系列(5)--挖掘建模 一.分类与预测 分类和预测是预测问题的两种主要类型,分类主要是预测分类标号(离散属性),而预测主要是建立连续值函数模型,预测给定自变量对应的因变量的值. 1.实现过程 (1)分类 分类是构造一个分类模型,输入样本的属性值,输出对应的类别,将每个样本映射到预先定义好的类别.分类模型建立在已有类标记的数据集上,模型在已有样本上的准确率可以方便地计算,所以分类属于有监督的学习. (2)预测 预测是建立两种或两种以上变量间相互依赖的函数模型,然后进行预测或控制.

挖掘建模

分类与预测 分类主要是预测分类标号(离散属性),预测是建立连续值函数模型,预测给定自变量的因变量的值. 常用的分类与预测算法 算法名称 算法简介 回归分析 回归分析是确定预测属性(数值型)与其他变量间相互依赖的定量关系最常用的统计学方法.包括线性回归,非线性回归,Logistic回归,岭回归,主成分回归,偏最小二乘回归等模型 决策树 决策树采用自顶向下的递归方式,在内部节点进行属性值的比较,并根据不同的属性值从该节点向下分支,最终得到的叶节点是学习划分的类 人工神经网络 人工神经网络是一种模仿大

人工神经网络 深度学习 MLP RBF RBM DBN DBM CNN 整理学习

注:整理自向世明老师的PPT 内容提要 1 发展历史 2 前馈网络(单层感知器,多层感知器,径向基函数网络RBF) 3 反馈网络(Hopfield网络,联想存储网络,SOM,Boltzman及受限的玻尔兹曼机RBM,DBN,CNN) 发展历史 单层感知器 1 基本模型 2 如果激励函数是线性的话,可用最小二乘直接计算 3 如果激励函数是sifmoid function,可迭代更新(一次性或者逐样本更新) 上式只做了简单的求导展开,很容易推导 多层感知器 1 基本模型 2 举例(含有一个隐含层的多

RBF神经网络和BP神经网络的关系

作者:李瞬生链接:https://www.zhihu.com/question/44328472/answer/128973724来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. BP Neural Network - 使用 Automatic Differentiation (Backpropagation) 进行导数计算的层级图模型 (layer-by-layer graphical model) 只要模型是一层一层的,并使用AD/BP算法,就能称作 BP Ne

机器学习之径向基神经网络(RBF NN)

本文基于台大机器学习技法系列课程进行的笔记总结. 主要内容如下图所示: 首先介绍一下径向基函数网络的Hypothesis和网络的结构,然后介绍径向基神经网络学习算法,以及利用K-means进行的学习,最后通过一个实例加深对RBF神经网络认识和理解. RBF神经网络的Hypothesis和网络结构 我们从基于Gaussian kernel的support vector machine中在无限维度中进行特征转换来获取一个large margin的边界,这个Gaussian kernel就是一个Rad

RBF神经网络学习算法及与多层感知器的比较

对于RBF神经网络的原理已经在我的博文<机器学习之径向基神经网络(RBF NN)>中介绍过,这里不再重复.今天要介绍的是常用的RBF神经网络学习算法及RBF神经网络与多层感知器网络的对比. 一.RBF神经网络学习算法 广义的RBF神经网络结构如下图所示: N-M-L结构对应着N维输入,M个数据中心点centers,L个输出. RBF 网络常用学习算法 RBF 网络的设计包括结构设计和参数设计.结构设计主要解决如何确定网络隐节点数的问题.参数设计一般需考虑包括3种参数:各基函数的数据中心和扩展常

RBF神经网络——直接看公式,本质上就是非线性变换后的线性变化(RBF神经网络的思想是将低维空间非线性不可分问题转换成高维空间线性可分问题)

Deeplearning Algorithms tutorial 谷歌的人工智能位于全球前列,在图像识别.语音识别.无人驾驶等技术上都已经落地.而百度实质意义上扛起了国内的人工智能的大旗,覆盖无人驾驶.智能助手.图像识别等许多层面.苹果业已开始全面拥抱机器学习,新产品进军家庭智能音箱并打造工作站级别Mac.另外,腾讯的深度学习平台Mariana已支持了微信语音识别的语音输入法.语音开放平台.长按语音消息转文本等产品,在微信图像识别中开始应用.全球前十大科技公司全部发力人工智能理论研究和应用的实现