Treats for the Cows
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 4264 | Accepted: 2155 |
Description
FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time.
The treats are interesting for many reasons:
- The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.
- Like fine wines and delicious cheeses, the treats improve with age and command greater prices.
- The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).
- Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.
Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally?
The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.
Input
Line 1: A single integer, N
Lines 2..N+1: Line i+1 contains the value of treat v(i)
Output
Line 1: The maximum revenue FJ can achieve by selling the treats
Sample Input
5 1 3 1 5 2
Sample Output
43
Hint
Explanation of the sample:
Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).
FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.
方法一
按照题意直接dp,dp[i][j][2],i是第i天,j是有j个,0是从前面取,1是从后面取。接着就可以根据dp[i-1][j][0],dp[i-1][j][1]推出dp[i][j][1],根据dp[i-1][j-1][0],dp[i-1][j-1][1]推出dp[i][j][0]。
代码:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int maxn=2000+100; int a[maxn]; int dp[maxn][maxn][2]; int main() { int n; while(~scanf("%d",&n)) { for(int i=1;i<=n;i++) scanf("%d",&a[i]); memset(dp,0,sizeof(dp)); int ans=max(a[1],a[n]); dp[1][1][0]=a[1]; dp[1][0][1]=a[n]; for(int i=2;i<=n;i++) { for(int j=i;j>=0;j--) { if((dp[i-1][j-1][0]||dp[i-1][j-1][1])&&j>0) dp[i][j][0]=max(dp[i-1][j-1][1],dp[i-1][j-1][0])+a[j]*i; if(dp[i-1][j][0]||dp[i-1][j][1]) dp[i][j][1]=max(dp[i-1][j][0],dp[i-1][j][1])+a[n-i+j+1]*i; ans=max(ans,dp[i][j][0]); ans=max(ans,dp[i][j][1]); } } printf("%d\n",ans); } return 0; }
方法二(区间DP)
dp[i][j],i表示区间起始点,j表示区间结束点,lg表示区间长度。
代码:
#include <cstdio> #include <cstring> #include <algorithm> #include <iostream> using namespace std; const int maxn=2000+200; int a[maxn]; int dp[maxn][maxn]; int main() { int n; while(~scanf("%d",&n)) { for(int i=1;i<=n;i++) { scanf("%d",&a[i]); } for(int i=1;i<=n;i++) dp[i][i]=a[i]*n;//区间长度为0,只有一个数,是最后出的数 for(int lg=1;lg<n;lg++) { for(int i=1;i<=n;i++) { int j=i+lg; dp[i][j]=max(dp[i+1][j]+a[i]*(n-lg),dp[i][j-1]+a[j]*(n-lg)); //这里是从最后出队的开始往前推,i~j可以从i+1~j和i~j-1推出 } } printf("%d\n",dp[1][n]); } }