nyoj 349&Poj 1094 Sorting It All Out

Sorting It All Out

时间限制:3000 ms  |  内存限制:65535 KB

难度:3

描述

An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.
输入
Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.
输出
For each problem instance, output consists of one line. This line should be one of the following three:

Sorted sequence determined after xxx relations: yyy...y. 
Sorted sequence cannot be determined. 
Inconsistency found after xxx relations.

where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.

样例输入
4 6
A<B
A<C
B<C
C<D
B<D
A<B
3 2
A<B
B<A
26 1
A<Z
0 0
样例输出
Sorted sequence determined after 4 relations: ABCD.
Inconsistency found after 2 relations.
Sorted sequence cannot be determined.

题目大意:给你n个点,给你m条边代表大小关系。问你在第几条边加入后有矛盾(有环)或能确定关系,或者不能确定关系。解题思路:首先每次加入一条边,就用floyd传递闭包,之后再判断是否形成环。如果没有环,就判断是否能确定唯一大小关系,这里有一个重要的判断条件即如果所有的结点的度等于n-1,则拓扑排序记录路径。
#include<bits/stdc++.h>
using namespace std;
int Map[50][50],indegree[50],outdegree[50];
char S_ord[50];
bool floyd(int n){
    for(int k=0;k<n;k++){   //传递闭包
        for(int i=0;i<n;i++){
            for(int j=0;j<n;j++){
                if(Map[i][k]&&Map[k][j])
                    Map[i][j]=1;
            }
        }
    }
    for(int i=0;i<n;i++)    //判断是否形成环
        if(Map[i][i])
            return 1;
    return 0;
}
bool calcu_is_ord(int n){  //计算目前是否有序
    memset(indegree,0,sizeof(indegree));
    memset(outdegree,0,sizeof(outdegree));
    for(int i=0;i<n;i++){
        for(int j=0;j<n;j++){
            if(Map[i][j]){
                indegree[j]++;
                outdegree[i]++;
            }
        }
    }
    for(int i=0;i<n;i++){
        if(indegree[i]+outdegree[i]!=n-1){
/*如果所有结点都满足入度加出度等于结点总数减一,说明已经有序。因为如果有序,必然
会有入度为0~n-1,相应的出度为n-1~0。所以只要所有的结点度都为n-1,则说明已经有序。
*/
            return 0;
        }
    }
    return 1;
}
void topo_sort(int n){  //拓扑排序求大小顺序
    int que_[50],vis[50],top=0,cnt=0,u;
    for(int i=0;i<n;i++){
        if(indegree[i]==0){
            que_[++top]=i;
        }
    }
    memset(vis,0,sizeof(vis));
    while(top){
        u=que_[top--];
        vis[u]=1;
        S_ord[cnt++]=u+‘A‘;
        for(int i=0;i<n;i++){
            if(!vis[i]&&Map[u][i]){
                indegree[i]--;
            }
            if(!vis[i]&&indegree[i]==0){
                que_[++top]=i;
            }
        }
    }
    S_ord[cnt++]=‘\0‘;
}
int main(){
    int n,m;
    char str[10];
    while(scanf("%d%d",&n,&m)!=EOF&&(n+m)){
        memset(Map,0,sizeof(Map));
        int flag_cir=0,flag_ord=0;  //记录在第几组关系输入时形成环或有序
        for(int i=1;i<=m;i++){
            scanf("%s",str);
            Map[str[0]-‘A‘][str[2]-‘A‘]=1;
            if(flag_cir||flag_ord)
                continue;
            if(floyd(n)){ flag_cir=i;continue;}
            else if(calcu_is_ord(n)){topo_sort(n);flag_ord=i;continue;}
        }
        if(flag_cir)
            printf("Inconsistency found after %d relations.\n",flag_cir);
        else if(flag_ord){
            printf("Sorted sequence determined after %d relations: %s.\n",flag_ord,S_ord);
        }else{
            printf("Sorted sequence cannot be determined.\n");
        }
    }
    return 0;
}

  

时间: 2024-10-13 00:08:03

nyoj 349&Poj 1094 Sorting It All Out的相关文章

拓扑序列变形 之 poj 1094 Sorting It All Out

/* 拓扑序列变形 之 poj 1094 Sorting It All Out 变形: 在每消去唯一一个入度为0的点后,只剩下唯一一个入度为0的点. 这样获得的n个点才是排序好的. */ 1 #include <iostream> 2 #include <cstdlib> 3 #include <cstdio> 4 #include <cstddef> 5 #include <iterator> 6 #include <algorithm&

poj 1094 Sorting It All Out 解题报告

题目链接:http://poj.org/problem?id=1094 题目意思:给出 n 个待排序的字母 和 m 种关系,问需要读到第 几 行可以确定这些字母的排列顺序或者有矛盾的地方,又或者虽然具体的字母顺序不能确定但至少不矛盾.这些关系均是这样的一种形式: 字母1 < 字母2 这道题目属于图论上的拓扑排序,由于要知道读入第几行可以确定具体的顺序,所以每次读入都需要进行拓扑排序来检验,这时每个点的入度就需要存储起来,所以就有了代码中memcpy 的使用了. 拓扑排序的思路很容易理解,但写起来

poj 1094 Sorting It All Out[ topo]

传送门:http://poj.org/problem?id=1094 Sorting It All Out Description An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequen

POJ 1094 Sorting It All Out(拓扑排序判环)

题目链接:http://poj.org/problem?id=1094 题目: Description An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D

POJ 1094 Sorting It All Out 拓扑排序

Sorting It All Out Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & %llu Description An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to

[ACM] POJ 1094 Sorting It All Out (拓扑排序)

Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26801   Accepted: 9248 Description An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from sm

POJ 1094 Sorting It All Out【floyd传递闭包+拓扑排序】

Sorting It All Out Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 31994 Accepted: 11117 Description An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from small

poj 1094 Sorting It All Out (拓扑排序)

Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 27929   Accepted: 9655 Description An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from sm

POJ 1094 Sorting It All Out(拓扑排序&#183;判断+实现)

题意  由一些不同元素组成的升序序列是可以用若干个小于号将所有的元素按从小到大的顺序 排列起来的序列.例如,排序后的序列为 A, B, C, D,这意味着 A < B.B < C和C < D.在本题中, 给定一组形如 A < B的关系式,你的任务是判定是否存在一个有序序列. 输出到哪一项可以确定顺序或者在这一项最先出现冲突,若所有的小于关系都处理完了都不能确定顺序也没有出现冲突,就输出不能确定 每来一个小于关系就进行一次拓扑排序  直到出现冲突(也就是出现了环)或者已经能确定顺序