洛谷 P1029 最大公约数和最小公倍数问题

P1029 最大公约数和最小公倍数问题

题目描述

输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数

条件:

1.P,Q是正整数

2.要求P,Q以x0为最大公约数,以y0为最小公倍数.

试求:满足条件的所有可能的两个正整数的个数.

输入输出格式

输入格式:

二个正整数x0,y0

输出格式:

一个数,表示求出满足条件的P,Q的个数

输入输出样例

输入样例#1: 复制

3 60

输出样例#1: 复制

4

说明

P,Q有4种

3 60 15 12 12 15 60 3

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int x,y,z,ans;
int pos=2;
int num[1000];
int gcd(int x,int y){
    return x==0?y:gcd(y%x,x);
}
int main(){
    scanf("%d%d",&x,&y);
    for(int i=x;i<=y;i++)
        for(int j=i+1;j<=y;j++){
            int GCD=gcd(i,j);
            if(GCD==x&&i*j/GCD==y)
                ans++;
        }
    cout<<ans*2;
}

n^2的暴力

数学:

最大公约数是x0,所以设这两个数为x0*k1 , x0*k2 (其中k1,k2互质)。

由题意得:x0 k1 k2 = y0 (想想对吧?),所以 k1*k2 = y0 / x0 (当然如果y0 / x0 除不尽的话 , 呵呵 ,当然没答案啦(输出0)**)

然后只要穷举k1 , k2 的值,因为 k1*k2 = y0 / x0 是轮换式 , 所以不妨设 k1 < k2 , 然后从1 ~ floor(sqrt(y0 / x0))穷举

如果k1, k2 互质 , 那么就找到 2 组解了 , 所以 sum += 2 。

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int x,y,z,ans;
int gcd(int x,int y){
    return x==0?y:gcd(y%x,x);
}
int main(){
    scanf("%d%d",&x,&y);
    if(y%x!=0){ cout<<"0";return 0; }
    z=y/x;
    for(int i=1;i<=sqrt(z);i++)
        if(z%i==0){
            int a=i,b=z/i;
            if(gcd(a,b)==1)    ans+=2;
        }
    cout<<ans;
}
时间: 2024-10-11 02:37:35

洛谷 P1029 最大公约数和最小公倍数问题的相关文章

洛谷P1029 最大公约数和最小公倍数问题 [2017年6月计划 数论02]

P1029 最大公约数和最小公倍数问题 题目描述 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1.P,Q是正整数 2.要求P,Q以x0为最大公约数,以y0为最小公倍数. 试求:满足条件的所有可能的两个正整数的个数. 输入输出格式 输入格式: 二个正整数x0,y0 输出格式: 一个数,表示求出满足条件的P,Q的个数 输入输出样例 输入样例#1: 3 60 输出样例#1: 4 说明 P,Q有4种 3 60

洛谷——P1029 最大公约数和最小公倍数问题

P1029 最大公约数和最小公倍数问题 题目描述 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1.P,Q是正整数 2.要求P,Q以x0为最大公约数,以y0为最小公倍数. 试求:满足条件的所有可能的两个正整数的个数. 输入输出格式 输入格式: 二个正整数x0,y0 输出格式: 一个数,表示求出满足条件的P,Q的个数 输入输出样例 输入样例#1: 复制 3 60 输出样例#1: 复制 4 说明 P,Q有4种

洛谷 P1029 最大公约数和最小公倍数问题 Label:Water&amp;&amp;非学习区警告

题目描述 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1.P,Q是正整数 2.要求P,Q以x0为最大公约数,以y0为最小公倍数. 试求:满足条件的所有可能的两个正整数的个数. 输入输出格式 输入格式: 二个正整数x0,y0 输出格式: 一个数,表示求出满足条件的P,Q的个数 输入输出样例 输入样例#1: 3 60 输出样例#1: 4 说明 P,Q有4种 3 60 15 12 12 15 60 3 代码

洛谷P1029 最大公约数和最小公倍数问题

题目描述 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1.P,Q是正整数 2.要求P,Q以x0为最大公约数,以y0为最小公倍数. 试求:满足条件的所有可能的两个正整数的个数. 输入输出格式 输入格式: 二个正整数x0,y0 输出格式: 一个数,表示求出满足条件的P,Q的个数 输入输出样例 输入样例#1: 3 60 输出样例#1: 4 说明 P,Q有4种 3 60 15 12 12 15 60 3 分析:

(洛谷1029 最大公约数和最小公倍数问题)

输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1.P,Q是正整数 2.要求P,Q以x0为最大公约数,以y0为最小公倍数. 试求:满足条件的所有可能的两个正整数的个数. 输入格式: 二个正整数x0,y0 输出格式: 一个数,表示求出满足条件的P,Q的个数 输入样例#1: 3 60 输出样例#1: 4枚举所有的b,看是否满足要求即可~(因为数据的范围比较的小) #include<bits/stdc++.

水题-洛谷P1209-最大公约数与最小公倍数问题

一个萌新的成长之路 Discription 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1.P,Q是正整数 2.要求P,Q以x0为最大公约数,以y0为最小公倍数. 试求:满足条件的所有可能的两个正整数的个数. Input&Output 输入格式: 二个正整数x0,y0 输出格式: 一个数,表示求出满足条件的P,Q的个数 Example Input: 3 60 Output: 4 Solution

NOIP2014/洛谷P2312 解方程

NOIP2014/洛谷P2312 解方程 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .in. 输入共n + 2 行. 第一行包含2 个整数n .m ,每两个整数之间用一个空格隔开. 接下来的n+1 行每行包含一个整数,依次为a0,a1,a2..an 输出格式: 输出文件名为equation .out . 第一行输出方程在[1, m ] 内的整数

洛谷 P2709 BZOJ 3781 小B的询问

题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数.小B请你帮助他回答询问. 输入输出格式 输入格式: 第一行,三个整数N.M.K. 第二行,N个整数,表示小B的序列. 接下来的M行,每行两个整数L.R. 输出格式: M行,每行一个整数,其中第i行的整数表示第i个询问的答案. 输入输出样例 输入样例#1: 6 4 3 1 3 2 1 1 3

洛谷1231 教辅的组成

洛谷1231 教辅的组成 https://www.luogu.org/problem/show?pid=1231 题目背景 滚粗了的HansBug在收拾旧语文书,然而他发现了什么奇妙的东西. 题目描述 蒟蒻HansBug在一本语文书里面发现了一本答案,然而他却明明记得这书应该还包含一份练习题.然而出现在他眼前的书多得数不胜数,其中有书,有答案,有练习册.已知一个完整的书册均应该包含且仅包含一本书.一本练习册和一份答案,然而现在全都乱做了一团.许多书上面的字迹都已经模糊了,然而HansBug还是可