逻辑回归-6.解决多分类问题

逻辑回归是使用回归的方式,来解决分类问题。之前说过,逻辑回归只能解决二分类问题,为了解决多分类问题,可以使用OVR和OVO方法

  • OVR(One Vs Rest)
    某个分类算法有N类,将某一类和剩余的类比较作为二分类问题,N个类别进行N次分类,得到N个二分类模型,给定一个新的样本点,求出每种二分类对应的概率,概率最高的一类作为新样本的预测结果。
  • OVO(One Vs One)
    某个分类算法有N类,将某一类和另一类比较作为二分类问题,总共可分为\(C^2_n\)种不同的二分类模型,给定一个新的样本点,求出每种二分类对应的概率,概率最高的一类作为新样本的预测结果。

加载鸢尾花数据集(数据集有三类结果):

import numpy
from sklearn import datasets
from sklearn.model_selection import train_test_split

iris = datasets.load_iris()
# 为了数据可视化,只取数据集的前两个特征
x = iris.data[:,:2]
y = iris.target
x_train,x_test,y_train,y_test = train_test_split(x,y,random_state=666)

scikit-learn中默认支持多分类,且多分类方法默认为OVR

from sklearn.linear_model import LogisticRegression

log_reg = LogisticRegression()
log_reg.fit(x_train,y_train)

画出决策边界:

使用OVO多分类方法:

log_reg2 = LogisticRegression(multi_class='multinomial',solver='newton-cg')
log_reg2.fit(x_train,y_train)

scikit-learn中的OVR和OVO类?

from sklearn.multiclass import OneVsRestClassifier,OneVsOneClassifier

# 使数据所有的特征值参与运算
x = iris.data
y = iris.target
x_train,x_test,y_train,y_test = train_test_split(x,y,random_state=666)
  • OVR
log_reg1 = LogisticRegression()
OVR = OneVsRestClassifier(log_reg1)
OVR.fit(x_train,y_train)

准确率:

  • OVO
log_reg2 = LogisticRegression()
OVR = OneVsRestClassifier(log_reg2)
OVR.fit(x_train,y_train)

准确率:

原文地址:https://www.cnblogs.com/shuai-long/p/11508760.html

时间: 2024-11-08 05:45:42

逻辑回归-6.解决多分类问题的相关文章

大白话5分钟带你走进人工智能-第二十节逻辑回归和Softmax多分类问题(5)

                                                    大白话5分钟带你走进人工智能-第二十节逻辑回归和Softmax多分类问题(5) 上一节中,我们讲解了逻辑回归的优化,本节的话我们讲解逻辑回归做多分类问题以及传统的多分类问题,我们用什么手段解决. 先看一个场景,假如我们现在的数据集有3个类别,我们想通过逻辑回归建模给它区分出来.但我们知道逻辑回归本质上是区分二分类的算法模型.难道没有解决办法了吗?办法还是有的,既然想分出3类,我们姑且称这3个类

机器学习笔记04:逻辑回归(Logistic regression)、分类(Classification)

之前我们已经大概学习了用线性回归(Linear Regression)来解决一些预测问题,详见: 1.<机器学习笔记01:线性回归(Linear Regression)和梯度下降(Gradient Decent)> 2.<机器学习笔记02:多元线性回归.梯度下降和Normal equation> 3.<机器学习笔记03:Normal equation及其与梯度下降的比较> 说明:本文章所有图片均属于Stanford机器学课程,转载请注明出处 面对一些类似回归问题,我们可

逻辑回归(分类算法)

1.什么是逻辑回归 在前面讲述的回归模型中,处理的因变量都是数值型区间变量,建立的模型描述是因变量的期望与自变量之间的线性关系.比如常见的线性回归模型: 而在采用回归模型分析实际问题中,所研究的变量往往不全是区间变量而是顺序变量或属性变量,比如二项分布问题.通过分析年龄.性别.体质指数.平均血压.疾病指数等指标,判断一个人是否换糖尿病,Y=0表示未患病,Y=1表示患病,这里的响应变量是一个两点(0-1)分布变量,它就不能用h函数连续的值来预测因变量Y(只能取0或1).总之,线性回归模型通常是处理

【机器学习算法应用和学习_2_理论篇】2.2 M_分类_逻辑回归

一.原理阐述 算法类型:监督学习_分类算法 输入:数值型或标称型(标称型需要独热编码) V1.0 用回归方式解决二分类问题,通过引入一个Sigmoid函数将中间y值映射到实际二分类的y值上. 二.算法选择 三.算法过程 1.Sigmoid函数是一个x值域是(-∞,+∞),y值域是(0,1)的单调递增函数: 2.预测y值>0.5为1类,<0.5为0类,y值也可以解释为为1和0类的概率: 3.同样使用“最小二乘”概念,求得最佳方程,得到目标函数: 4.要使得目标函数达到最小,需要采用一种称为“梯度

第二章 分类和逻辑回归

分类和逻辑回归 接下来讨论分类问题,类似于回归问题,只不过y的值只有少数离散的值.现在我们考虑二分类问题,此时y只有0和1两个值. 逻辑回归 构造假设函数$h_{\theta}(x)$: $h_{\theta}(x)=g(\theta^{(x)})=\frac{1}{1+e^{-\theta^{T}x}}$ 其中 $g(z)=\frac{1}{1+e^{-z}}$ $g^{'}(z)=g(z)(1-g(z))$ $g(z)$函数图像如下: $g^{'}(z)$函数图像如下: 假设: $P(y=1

从另一个视角看待逻辑回归

摘要 逻辑回归是用在分类问题中,而分类为题有存在两个比较大的方向:分类的结果用数值表是,比如1和0(逻辑回归采用的是这种),或者-1和1(svm采用的),还有一种是以概率的形式来反应,通过概率来说明此样本要一个类的程度即概率.同时分类问题通过适用的场合可以分为:离散和连续,其中决策树分类,贝叶斯分类都是适用离散场景,但是连续场景也可以处理,只是处理起来比较麻烦,而逻辑回归就是用在连续特征空间中的,并把特征空间中的超平面的求解转化为概率进行求解,然后通过概率的形式来找给出分类信息,最后设置一个阈值

逻辑回归原理小结

逻辑回归是一个分类算法,它可以处理二元分类以及多元分类.虽然它名字里面有"回归"两个字,却不是一个回归算法.那为什么有"回归"这个误导性的词呢?个人认为,虽然逻辑回归是分类模型,但是它的原理里面却残留着回归模型的影子,本文对逻辑回归原理做一个总结. 1. 从线性回归到逻辑回归 我们知道,线性回归的模型是求出输出特征向量Y和输入样本矩阵X之间的线性关系系数\(\theta\),满足\(\mathbf{Y = X\theta}\).此时我们的Y是连续的,所以是回归模型.

线性回归,逻辑回归的学习(包含最小二乘法及极大似然函数等)

博文参考了以下两位博主的文章:http://blog.csdn.net/lu597203933/article/details/45032607,http://blog.csdn.net/viewcode/article/details/8794401 回归问题的前提: 1) 收集的数据 2) 假设的模型,即一个函数,这个函数里含有未知的参数,通过学习,可以估计出参数.然后利用这个模型去预测/分类新的数据. 1. 线性回归 假设 特征 和 结果 都满足线性.即不大于一次方.这个是针对 收集的数据

机器学习 (三) 逻辑回归 Logistic Regression

文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 3.  逻辑回归 Logistic Regression 1 分类Classification 首先引入了分类问题的概念——在分类(Classification)问题中,所需要预测的$y$是离散值.例如判断一封邮件是否属于垃圾邮件.判断一个在线交