Python3网络爬虫实战-3、数据库的安装:MySQL、MongoDB、Redis

抓取下网页代码之后,下一步就是从网页中提取信息,提取信息的方式有多种多样,可以使用正则来提取,但是写起来会相对比较繁琐。在这里还有许多强大的解析库,如 LXML、BeautifulSoup、PyQuery 等等,提供了非常强大的解析方法,如 XPath 解析、CSS 选择器解析等等,利用它们我们可以高效便捷地从从网页中提取出有效信息。

本节我们就来介绍一下这些库的安装过程。

1.2.1 LXML的安装

LXML 是 Python 的一个解析库,支持 HTML 和 XML 的解析,支持 XPath 解析方式,而且解析效率非常高。

1. 相关链接

2. Mac下的安装

pip3?install?lxml

如果产生错误,可以执行如下命令将必要的类库安装:

xcode-select?--install
Python资源分享qun 784758214 ,内有安装包,PDF,学习视频,这里是Python学习者的聚集地,零基础,进阶,都欢迎

之后再重新运行 Pip 安装就没有问题了。

LXML 是一个非常重要的库,后面的 BeautifulSoup、Scrapy 框架都需要用到此库,所以请一定安装成功。

3. 验证安装

安装完成之后,可以在 Python 命令行下测试。

$ python3
>>> import lxml

如果没有错误报出,则证明库已经安装好了。

1.2.2 BeautifulSoup的安装

BeautifulSoup 是 Python 的一个 HTML 或 XML 的解析库,我们可以用它来方便地从网页中提取数据,它拥有强大的 API 和多样的解析方式,本节我们了解下它的安装方式。

1. 相关链接

2. 准备工作

BeautifulSoup 的 HTML 和 XML 解析器是依赖于 LXML 库的,所以在此之前请确保已经成功安装好了 LXML 库,具体的安装方式参见上节。

3. Pip 安装

目前 BeautifulSoup 的最新版本是 4.x 版本,之前的版本已经停止开发了,推荐使用 Pip 来安装,安装命令如下:

pip3?install?beautifulsoup4

命令执行完毕之后即可完成安装。

4. 验证安装

安装完成之后可以运行下方的代码验证一下。

from bs4 import BeautifulSoup
soup = BeautifulSoup(‘<p>Hello</p>‘, ‘lxml‘)
print(soup.p.string)

运行结果:

Hello

如果运行结果一致则证明安装成功。

注意在这里我们虽然安装的是 beautifulsoup4 这个包,但是在引入的时候是引入的 bs4,这是因为这个包源代码本身的库文件夹名称就是 bs4,所以安装完成之后,这个库文件夹就被移入到我们本机 Python3 的 lib 库里,所以识别到的库文件名称就叫做 bs4,所以我们引入的时候就引入 bs4 这个包。

因此,包本身的名称和我们使用时导入的包的名称并不一定是一致的。

1.2.3 PyQuery的安装

PyQuery 同样是一个强大的网页解析工具,它提供了和 jQuery 类似的语法来解析 HTML 文档,支持 CSS 选择器,使用非常方便,本节我们了解下它的安装方式。

1. 相关链接

2. Pip安装


pip3 install pyquery

3. 验证安装

安装完成之后,可以在 Python 命令行下测试。

$ python3
>>> import pyquery

如果没有错误报出,则证明库已经安装好了。

1.2.4 Tesserocr的安装

爬虫过程中难免会遇到各种各样的验证码,而大多数验证码还是图形验证码,这时候我们可以直接用 OCR 来识别。

1. OCR

OCR,即 Optical Character Recognition,光学字符识别。是指通过扫描字符,然后通过其形状将其翻译成电子文本的过程。那么对于图形验证码来说,它都是一些不规则的字符,但是这些字符确实是由字符稍加扭曲变换得到的内容。
例如这样的验证码,如图 1-22 和 1-23 所示:

图 1-22 验证码

图 1-23 验证码
对于这种验证码,我们便可以使用 OCR 技术来将其转化为电子文本,然后爬虫将识别结果提交给服务器,便可以达到自动识别验证码的过程。
Tesserocr 是 Python 的一个 OCR 识别库,但其实是对 Tesseract 做的一层 Python API 封装,所以它的核心是 Tesseract,所以在安装 Tesserocr 之前我们需要先安装 Tesseract,本节我们来了解下它们的安装方式。

2. 相关链接

3. Mac下的安装

Mac 下首先使用 Homebrew 安装 Imagemagick 和 Tesseract 库:

brew install imagemagick
brew install tesseract
Python资源分享qun 784758214 ,内有安装包,PDF,学习视频,这里是Python学习者的聚集地,零基础,进阶,都欢迎

接下来再安装 Tesserocr 即可:

pip3?install?tesserocr pillow

这样我们便完成了 Tesserocr 的安装。

4. 验证安装

接下来我们可以使用 Tesseract 和 Tesserocr 来分别进行测试。
下面我们以如下的图片为样例进行测试,如图 1-26 所示:

图 1-26 测试样例
图片链接为:https://raw.githubusercontent...,可以直接保存或下载。
我们首先用命令行进行测试,将图片下载保存为 image.png,然后用 Tesseract 命令行测试,命令如下:

tesseract?image.png?result?-l?eng?&amp;&amp;?cat?result.txt

运行结果:

Tesseract Open Source OCR Engine v3.05.01 with Leptonica
Python3WebSpider

我们调用了 tesseract 命令,第一个参数为图片名称,第二个参数 result 为结果保存的目标文件名称,-l 指定使用的语言包,在此使用 eng 英文,然后再用 cat 命令将结果输出。
第二行的运行结果便是图片的识别结果,Python3WebSpider。
我们可以看到这时已经成功将图片文字转为电子文本了。
然后我们还可以利用 Python 代码来测试,这里就需要借助于 Tesserocr 库了,测试代码如下:

import tesserocr
from PIL import Image
image = Image.open(‘image.png‘)
print(tesserocr.image_to_text(image))

如果在运行期间python3闪退,出现下面错误:

!strcmp(locale,?"C"):Error:Assert?failed:in?file baseapi.cpp, line?209

就需要这样运行了:

import locale
locale.setlocale(locale.LC_ALL,‘C‘)

import tesserocr
from PIL import Image
image = Image.open(‘image.png‘)
print(tesserocr.image_to_text(image))

在这里我们首先利用 Image 读取了图片文件,然后调用了 tesserocr 的 image_to_text() 方法,再将将其识别结果输出。
运行结果:

Python3WebSpider

另外我们还可以直接调用 file_to_text() 方法,也可以达到同样的效果:

import tesserocr
print(tesserocr.file_to_text(‘image.png‘))
Python资源分享qun 784758214 ,内有安装包,PDF,学习视频,这里是Python学习者的聚集地,零基础,进阶,都欢迎

运行结果:

Python3WebSpider

如果成功输出结果,则证明 Tesseract 和 Tesserocr 都已经安装成功。

原文地址:https://blog.51cto.com/14445003/2424614

时间: 2024-10-07 05:01:52

Python3网络爬虫实战-3、数据库的安装:MySQL、MongoDB、Redis的相关文章

《Python3网络爬虫实战案例(崔庆才著)》 中文版PDF下载,附源代码+视频教程

<Python3网络爬虫实战案例(崔庆才著)>中文版PDF下载,附源代码+视频教程,带目录资料下载:https://pan.baidu.com/s/1OzxyHQMLOzWFMzjdQ8kEqQ 原文地址:http://blog.51cto.com/7369682/2330247

Python3网络爬虫实战-10、爬虫框架的安装:PySpider、Scrapy

我们直接用 Requests.Selenium 等库写爬虫,如果爬取量不是太大,速度要求不高,是完全可以满足需求的.但是写多了会发现其内部许多代码和组件是可以复用的,如果我们把这些组件抽离出来,将各个功能模块化,就慢慢会形成一个框架雏形,久而久之,爬虫框架就诞生了. 利用框架我们可以不用再去关心某些功能的具体实现,只需要去关心爬取逻辑即可.有了它们,可以大大简化代码量,而且架构也会变得清晰,爬取效率也会高许多.所以如果对爬虫有一定基础,上手框架是一种好的选择. 本书主要介绍的爬虫框架有PySpi

Python3网络爬虫实战-4、存储库的安装:PyMySQL、PyMongo、RedisPy、Red

在前面一节我们介绍了几个数据库的安装方式,但这仅仅是用来存储数据的数据库,它们提供了存储服务,但如果想要和 Python 交互的话也同样需要安装一些 Python 存储库,如 MySQL 需要安装 PyMySQL,MongoDB 需要安装 PyMongo 等等,本节我们来说明一下这些库的安装方式. 1.4.1 PyMySQL的安装 在前面一节我们了解了 MySQL 的安装方式,在 Python3 中如果想要将数据存储到 MySQL 中就需要借助于 PyMySQL 来操作,本节我们介绍一下 PyM

Python3网络爬虫实战-34、数据存储:非关系型数据库存储:Redis

Redis 是一个基于内存的高效的键值型非关系型数据库,存取效率极高,而且支持多种存储数据结构,使用也非常简单,在本节我们介绍一下 Python 的 Redis 操作,主要介绍 RedisPy 这个库的用法. 1. 准备工作 在本节开始之前请确保已经安装好了 Redis 及 RedisPy库,如果要做数据导入导出操作的话还需要安装 RedisDump,如没有安装可以参考第一章的安装说明. 2. Redis.StrictRedis RedisPy 库提供两个类 Redis 和 StrictRedi

Python3网络爬虫实战-23、使用Urllib:分析Robots协议

利用 Urllib 的 robotparser 模块我们可以实现网站 Robots 协议的分析,本节我们来简单了解一下它的用法. 1. Robots协议 Robots 协议也被称作爬虫协议.机器人协议,它的全名叫做网络爬虫排除标准(Robots Exclusion Protocol),用来告诉爬虫和搜索引擎哪些页面可以抓取,哪些不可以抓取.它通常是一个叫做 robots.txt 的文本文件,放在网站的根目录下. 当搜索爬虫访问一个站点时,它首先会检查下这个站点根目录下是否存在 robots.tx

Python3网络爬虫实战-32、数据存储:关系型数据库存储:MySQL

关系型数据库基于关系模型的数据库,而关系模型是通过二维表来保存的,所以它的存储方式就是行列组成的表,每一列是一个字段,每一行是一条记录.表可以看作是某个实体的集合,而实体之间存在联系,这就需要表与表之间的关联关系来体现,如主键外键的关联关系,多个表组成一个数据库,也就是关系型数据库. 关系型数据库有多种,如 SQLite.MySQL.Oracle.SQL Server.DB2等等. 在本节我们主要介绍 Python3 下 MySQL 的存储. 在 Python2 中,连接 MySQL 的库大多是

Python3网络爬虫实战-33、数据存储:非关系型数据库存储:MongoDB

NoSQL,全称 Not Only SQL,意为不仅仅是 SQL,泛指非关系型的数据库.NoSQL 是基于键值对的,而且不需要经过 SQL 层的解析,数据之间没有耦合性,性能非常高. 非关系型数据库又可以细分如下: 键值存储数据库,代表有 Redis, Voldemort, Oracle BDB 等. 列存储数据库,代表有 Cassandra, HBase, Riak 等. 文档型数据库,代表有 CouchDB, MongoDB 等. 图形数据库,代表有 Neo4J, InfoGrid, Inf

Python3网络爬虫实战-5、Web库的安装:Flask、Tornado

Web 想必我们都不陌生,我们现在日常访问的网站都是 Web 服务程序搭建而成的,Python 同样不例外也有一些这样的 Web 服务程序,比如 Flask.Django 等,我们可以拿它来开发网站,开发接口等等. 在本书中,我们主要要用到这些 Web 服务程序来搭建一些 API 接口,供我们的爬虫使用.例如,维护一个代理池,代理保存在 Redis 数据库中,我们要将代理池作为一个公共的组件使用,那么如何构建一个方便的平台来供我们取用这些代理呢?最合适不过的就是通过 Web 服务提供一个 API

Python3网络爬虫实战-6、APP爬取相关库的安装:Charles的安装

除了 Web 网页,爬虫也可以对 APP 的数据进行抓取,APP 中的页面要加载出来,首先需要获取数据,那么这些数据一般是通过请求服务器的接口来获取的,由于 APP 端没有像浏览器一样的开发者工具直接比较直观地看到后台的请求,所以对 APP 来说,它的数据抓取主要用到一些抓包技术. 本书介绍的抓包工具有 Charles.MitmProxy.MitmDump,APP 一些简单的接口我们通过 Charles 或 MitmProxy 分析找出规律就可以直接用程序模拟来抓取了,但是如果遇到更复杂的接口我