kubernetes-整体概述和架构详解

一、Kubernetes是什么

Kubernetes是一个轻便的和可扩展的开源平台,用于管理容器化应用和服务。通过Kubernetes能够进行应用的自动化部署和扩缩容。在Kubernetes中,会将组成应用的容器组合成一个逻辑单元以更易管理和发现。Kubernetes积累了作为Google生产环境运行工作负载15年的经验,并吸收了来自于社区的最佳想法和实践。Kubernetes经过这几年的快速发展,形成了一个大的生态环境,Google在2014年将Kubernetes作为开源项目。Kubernetes的关键特性包括:

自动化装箱:在不牺牲可用性的条件下,基于容器对资源的要求和约束自动部署容器。同时,为了提高利用率和节省更多资源,将关键和最佳工作量结合在一起。

自愈能力:当容器失败时,会对容器进行重启;当所部署的Node节点有问题时,会对容器进行重新部署和重新调度;当容器未通过监控检查时,会关闭此容器;直到容器正常运行时,才会对外提供服务。

水平扩容:通过简单的命令、用户界面或基于CPU的使用情况,能够对应用进行扩容和缩容。

服务发现和负载均衡:开发者不需要使用额外的服务发现机制,就能够基于Kubernetes进行服务发现和负载均衡。

自动发布和回滚:Kubernetes能够程序化的发布应用和相关的配置。如果发布有问题,Kubernetes将能够回归发生的变更。

保密和配置管理:在不需要重新构建镜像的情况下,可以部署和更新保密和应用配置。

存储编排:自动挂接存储系统,这些存储系统可以来自于本地、公共云提供商(例如:GCP和AWS)、网络存储(例如:NFS、iSCSI、Gluster、Ceph、Cinder和Floker等)。

二、Kubernetes的整体架构

Kubernetes属于主从分布式架构,主要由Master Node和Worker Node组成,以及包括客户端命令行工具kubectl和其它附加项。

Master Node:作为控制节点,对集群进行调度管理;Master Node由API Server、Scheduler、Cluster State Store(etcd)和Controller Manger Server所组成;

Worker Node:作为真正的工作节点,运行业务应用的容器;Worker Node包含kubelet、kube proxy和Container Runtime;

kubectl:用于通过命令行与API Server进行交互,而对Kubernetes进行操作,实现在集群中进行各种资源的增删改查等操作;

Add-on:是对Kubernetes核心功能的扩展,例如增加网络和网络策略等能力。

1 Master Node(主节点)

1.1 API Server(API服务器)

API Server主要用来处理REST的操作,确保它们生效,并执行相关业务逻辑,以及更新etcd(或者其他存储)中的相关对象。API Server是所有REST命令的入口,它的相关结果状态将被保存在etcd(或其他存储)中。API Server的基本功能包括:

REST语义,监控,持久化和一致性保证,API 版本控制,放弃和生效
内置准入控制语义,同步准入控制钩子,以及异步资源初始化
API注册和发现
另外,API Server也作为集群的网关。默认情况,客户端通过API Server对集群进行访问,客户端需要通过认证,并使用API Server作为访问Node和Pod(以及service)的堡垒和代理/通道。

1.2 Cluster state store(集群状态存储)

Kubernetes默认使用etcd作为集群整体存储,当然也可以使用其它的技术。etcd是一个简单的、分布式的、一致的key-value存储,主要被用来共享配置和服务发现。etcd提供了一个CRUD操作的REST API,以及提供了作为注册的接口,以监控指定的Node。集群的所有状态都存储在etcd实例中,并具有监控的能力,因此当etcd中的信息发生变化时,就能够快速的通知集群中相关的组件。

1.3 Controller-Manager Server(控制管理服务器)

Controller-Manager Serve用于执行大部分的集群层次的功能,它既执行生命周期功能(例如:命名空间创建和生命周期、事件垃圾收集、已终止垃圾收集、级联删除垃圾收集、node垃圾收集),也执行API业务逻辑(例如:pod的弹性扩容)。控制管理提供自愈能力、扩容、应用生命周期管理、服务发现、路由、服务绑定和提供。Kubernetes默认提供Replication Controller、Node Controller、Namespace Controller、Service Controller、Endpoints Controller、Persistent Controller、DaemonSet Controller等控制器。

1.4 Scheduler(调度器)

scheduler组件为容器自动选择运行的主机。依据请求资源的可用性,服务请求的质量等约束条件,scheduler监控未绑定的pod,并将其绑定至特定的node节点。Kubernetes也支持用户自己提供的调度器,Scheduler负责根据调度策略自动将Pod部署到合适Node中,调度策略分为预选策略和优选策略,Pod的整个调度过程分为两步:

1)预选Node:遍历集群中所有的Node,按照具体的预选策略筛选出符合要求的Node列表。如没有Node符合预选策略规则,该Pod就会被挂起,直到集群中出现符合要求的Node。

2)优选Node:预选Node列表的基础上,按照优选策略为待选的Node进行打分和排序,从中获取最优Node。

2 Worker Node(从节点)

2.1 Kubelet

Kubelet是Kubernetes中最主要的控制器,维护容器的生命周期,并管理CSI(Container Storage Interface)和CNI(Conteinre Network Interface)。它是Pod和Node API的主要实现者,Kubelet负责驱动容器执行层。在Kubernetes中,应用容器彼此是隔离的,并且与运行其的主机也是隔离的,这是对应用进行独立解耦管理的关键点。

在Kubernets中,Pod作为基本的执行单元,它可以拥有多个容器和存储数据卷,能够方便在每个容器中打包一个单一的应用,从而解耦了应用构建时和部署时的所关心的事项,已经能够方便在物理机/虚拟机之间进行迁移。API准入控制可以拒绝或者Pod,或者为Pod添加额外的调度约束,但是Kubelet才是Pod是否能够运行在特定Node上的最终裁决者,而不是scheduler或者DaemonSet。kubelet默认情况使用cAdvisor进行资源监控。负责管理Pod、容器、镜像、数据卷等,实现集群对节点的管理,并将容器的运行状态汇报给Kubernetes API Server。

2.2 Container Runtime(容器运行时)

每一个Node都会运行一个Container Runtime,其负责下载镜像和运行容器。Kubernetes本身并不停容器运行时环境,但提供了接口,可以插入所选择的容器运行时环境。kubelet使用Unix socket之上的gRPC框架与容器运行时进行通信,kubelet作为客户端,而CRI shim作为服务器。

protocol buffers API提供两个gRPC服务,ImageService和RuntimeService。ImageService提供拉取、查看、和移除镜像的RPC。RuntimeSerivce则提供管理Pods和容器生命周期管理的RPC,以及与容器进行交互(exec/attach/port-forward)。容器运行时能够同时管理镜像和容器(例如:Docker和Rkt),并且可以通过同一个套接字提供这两种服务。在Kubelet中,这个套接字通过–container-runtime-endpoint和–image-service-endpoint字段进行设置。Kubernetes CRI支持的容器运行时包括docker、rkt、cri-o、frankti、kata-containers和clear-containers等。

2.3 kube proxy

基于一种公共访问策略(例如:负载均衡),服务提供了一种访问一群pod的途径。此方式通过创建一个虚拟的IP来实现,客户端能够访问此IP,并能够将服务透明的代理至Pod。每一个Node都会运行一个kube-proxy,kube proxy通过iptables规则引导访问至服务IP,并将重定向至正确的后端应用,通过这种方式kube-proxy提供了一个高可用的负载均衡解决方案。服务发现主要通过DNS实现。

在Kubernetes中,kube proxy负责为Pod创建代理服务;引到访问至服务;并实现服务到Pod的路由和转发,以及通过应用的负载均衡。

3 kubectl

kubectl是Kubernetes集群的命令行接口。运行kubectl命令的语法如下所示

$ kubectl [command] [TYPE] [NAME] [flags]
这里的command,TYPE、NAME和flags为:

comand:指定要对资源执行的操作,例如create、get、describe和delete
TYPE:指定资源类型,资源类型是大小写敏感的,开发者能够以单数、复数和缩略的形式。例如:

$ kubectl get pod pod1
$ kubectl get pods pod1
$ kubectl get po pod1
NAME:指定资源的名称,名称也大小写敏感的。如果省略名称,则会显示所有的资源,例如:

$kubectl get pods
flags:指定可选的参数。例如,可以使用-s或者–server参数指定Kubernetes API server的地址和端口。
另外,可以通过运行kubectl help命令获取更多的信息。

4 add-one(附加项和其他依赖)

在Kunbernetes中可以以附加项的方式扩展Kubernetes的功能,目前主要有网络、服务发现和可视化这三大类的附加项,下面是可用的一些附加项:

4.1 网络和网络策略

ACI 通过与Cisco ACI集成的容器网络和网络安全。
Calico 是一个安全的3层网络和网络策略提供者。
Canal 联合Fannel和Calico,通过网络和网络侧。
Cilium 是一个3层网络和网络侧插件,它能够透明的加强HTTP/API/L7 策略。其即支持路由,也支持overlay/encapsultion模式。
Flannel 是一个overlay的网络提供者。

4.2 服务发现

CoreDNS 是一个灵活的,可扩展的DNS服务器,它能够作为Pod集群内的DNS进行安装。

Ingress 提供基于Http协议的路由转发机制。

4.3 可视化&控制

Dashboard 是Kubernetes的web用户界面。

三、kubenetes工作原理

1 工作原理

1 准备包含应用程序的Deployment的yml文件,然后通过kubectl客户端工具发送给ApiServer。

2 ApiServer接收到客户端的请求并将资源内容存储到数据库(etcd)中。

3 Controller组件(包括scheduler、replication、endpoint)监控资源变化并作出反应。

4 ReplicaSet检查数据库变化,创建期望数量的pod实例。

5 Scheduler再次检查数据库变化,发现尚未被分配到具体执行节点(node)的Pod,然后根据一组相关规则将pod分配到可以运行它们的节点上,并更新数据库,记录pod分配情况。

6 Kubelete监控数据库变化,管理后续pod的生命周期,发现被分配到它所在的节点上运行的那些pod。如果找到新pod,则会在该节点上运行这个新pod。

另:kuberproxy运行在集群各个主机上,管理网络通信,如服务发现、负载均衡。当有数据发送到主机时,将其路由到正确的pod或容器。对于从主机上发出的数据,它可以基于请求地址发现远程服务器,并将数据正确路由,在某些情况下会使用轮循调度算法(Round-robin)将请求发送到集群中的多个实例。

2 pod创建的时序图

以下是pod创建的时序图,此典型的创建过程以帮助理解k8s的工作原理:

pod创建的时序图,此典型的创建过程以帮助理解k8s的工作原理:

1 用户提交创建Pod的请求,可以通过API Server的REST API ,也可用Kubectl命令行工具,支持Json和Yaml两种格式;

2 API Server 处理用户请求,存储Pod数据到Etcd;

3 Schedule通过和 API Server的watch机制,查看到新的pod,尝试为Pod绑定Node;

4 过滤主机:调度器用一组规则过滤掉不符合要求的主机,比如Pod指定了所需要的资源,那么就要过滤掉资源不够的主机;

5 主机打分:对第一步筛选出的符合要求的主机进行打分,在主机打分阶段,调度器会考虑一些整体优化策略,比如把一个Replication Controller的副本分布到不同的主机上,使用最低负载的主机等;

6 选择主机:选择打分最高的主机,进行binding操作,结果存储到Etcd中;

7 kubelet根据调度结果执行Pod创建操作: 绑定成功后,会启动container, docker run, scheduler会调用API Server的API在etcd中创建一个bound pod对象,描述在一个工作节点上绑定运行的所有pod信息。运行在每个工作节点上的kubelet也会定期与etcd同步bound pod信息,一旦发现应该在该工作节点上运行的bound pod对象没有更新,则调用Docker API创建并启动pod内的容器。

————————————————
版权声明:本文为CSDN博主「星光001」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/u014042372/article/details/80573213

原文地址:https://www.cnblogs.com/malukang/p/11537951.html

时间: 2024-10-19 16:57:33

kubernetes-整体概述和架构详解的相关文章

领域驱动设计(Domain Driven Design)参考架构详解

转自:http://blog.csdn.net/bluishglc/article/details/6681253 领域驱动设计(Domain Driven Design)参考架构详解 摘要 本文将介绍领域驱动设计(Domain Driven Design)的官方参考架构,该架构分成了Interfaces.Applications和Domain三层以及包含各类基础设施的Infrastructure.本文会对架构中一些重要组件和问题进行讨论,给出一些分析结论.本文原文连接:http://blog.

[转载]领域驱动设计(Domain Driven Design)参考架构详解

摘要 本文将介绍领域驱动设计(Domain Driven Design)的官方参考架构,该架构分成了Interfaces.Applications和Domain三层以及包含各类基础设施的Infrastructure.本文会对架构中一些重要组件和问题进行讨论,给出一些分析结论.本文原文连接:http://blog.csdn.net/bluishglc/article/details/6681253 转载请注明出处! 目录 1.      架构概述2.      架构详解        2.1.  

MySQL主从架构详解

1.复制概述 Mysql内建的复制功能是构建大型,高性能应用程序的基础.将Mysql的数据分布到多个系统上去,这种分布的机制,是通过将Mysql的某一台主机的数据复制到其它主机(slaves)上,并重新执行一遍来实现的.复制过程中一个服务器充当主服务器,而一个或多个其它服务器充当从服务器.主服务器将更新写入二进制日志文件,并维护文件的一个索引以跟踪日志循环.这些日志可以记录发送到从服务器的更新.当一个从服务器连接主服务器时,它通知主服务器从服务器在日志中读取的最后一次成功更新的位置.从服务器接收

阿里巴巴 Sigma 调度和集群管理系统架构详解

阿里巴巴 Sigma 调度和集群管理系统架构详解 划重点 阿里巴巴 9 年双 11 经历下来,交易额增长了 280 倍.交易峰值增长 800 多倍.系统数呈现爆发式增长.系统在支撑双 11 过程中的复杂度和支撑难度以指数级形式上升.双 11 峰值的本质是用有限的成本最大化提升用户体验和集群吞吐能力,用合理的代价解决峰值.本文将从阿里巴巴统一调度体系.混部架构.云化架构三个方面详解阿里是如何支撑如此庞大的系统. 统一调度体系 始于 2011 年建设的 Sigma 是服务阿里巴巴在线业务的调度系统,

支撑5亿用户、1.5亿活跃用户的Twitter最新架构详解及相关实现

如果你对项目管理.系统架构有兴趣,请加微信订阅号"softjg",加入这个PM.架构师的大家庭 摘要:Twitter出道之初只是个奋斗在RoR上的小站点,而如今已拥有1.5亿的活跃用户,系统日传输tweet更多达4亿条,并已完成了以服务为核心的系统架构蜕变. Twitter如今在世界范围内已拥有1.5亿的活跃用户,为了给用户生成timeline(时间轴)需支撑30万QPS,其firehose每秒同样生成22MB数据.整个系统每天传输tweet 4亿条,并且只需要5分钟就可以让一条twe

高并发高流量网站架构详解

(推荐)高并发高流量网站架构详解 Web2.0的兴起,掀起了互联网新一轮的网络创业大潮.以用户为导 向的新网站建设概念,细分了网站功能和用户群,不仅成功的造就了一大批新生的网站,也极大的方便了上网的人们.但Web2.0以用户为导向的理念,使得新 生的网站有了新的特点--高并发,高流量,数据量大,逻辑复杂等,对网站建设也提出了新的要求. 本文围绕高并发高流量的网站架构设计问题,主要研究讨论了以下内容: 首先在整个网络的高度讨论了使用镜像网站,CDN内容分发网络等技术对负载均衡带来的便利及各自的优缺

瘸腿蛤蟆笔记37-cocos2d-x-3.2 Box2dTestBed架构详解

瘸腿蛤蟆原创笔记,欢迎转载,转载请标明出处: 上篇回顾 本篇名言:凡是内心能够想到.相信的,都是可以达到的. [Napoleon Hill] 在最早的时候,蛤蟆学习过cocos2d-x示例架构.这次在这个基础上,蛤蟆要学习Box2dTestBed这个物理引擎的DEMO架构.这样大家可以自己深入研究之了. 架构详解 第一步基本类介绍 首先从我们点到controller.cpp文件中.找到第43行如下: { "Box2d - TestBed", []() { return new Box2

新书《Nginx实战:基于Lua语言的配置、开发与架构详解》开始发售

新书<Nginx实战:基于Lua语言的配置.开发与架构详解>开始发售https://item.jd.com/12487157.html#none <Nginx实战:基于Lua语言的配置.开发与架构详解>主要讲解了Nginx在反向代理和应用开发中的作用,阅读本书可以了解Nginx在互联网开发中扮演的多个角色,充分利用这些角色的各项功能有助于提升服务的整体性能.<Nginx实战:基于Lua语言的配置.开发与架构详解>所介绍的大部分功能是通过Nginx+Lua进行开发和配置的

NopCommerce源码架构详解--初识高性能的开源商城系统cms

很多人都说通过阅读.学习大神们高质量的代码是提高自己技术能力最快的方式之一.我觉得通过阅读NopCommerce的源码,可以从中学习很多企业系统.软件开发的规范和一些新的技术.技巧,可以快速地提高我们的技术能力.所以我最近决定写一个“NopCommerce源码架构详解”的系列,来详细剖析NopCommerce的架构和原理. Nopcommerce主要用到的技术及特点: 1.Entity Framework 2.ASP.NET mvc 3.IoC容器+依赖注入(Autofac) 4.使用EF中的E