MongoDB CPU 利用率高排查

MongoDB CPU 利用率高,怎么破?

经常有用户咨询「MongoDB CPU 利用率很高,都快跑满了」,应该怎么办?

遇到这个问题,99.9999% 的可能性是「用户使用上不合理导致」,本文主要介绍从应用的角度如何排查 MongoDB CPU 利用率高的问题

Step1: 分析数据库正在执行的请求

用户可以通过 Mongo Shell 连接,并执行 db.currentOp() 命令,能看到数据库当前正在执行的操作,如下是该命令的一个输出示例,标识一个正在执行的操作。重点关注几个字段

  • client:请求是由哪个客户端发起的?
  • opid:操作的opid,有需要的话,可以通过 db.killOp(opid) 直接干掉的操作
  • secs_running/microsecs_running: 这个值重点关注,代表请求运行的时间,如果这个值特别大,就得注意了,看看请求是否合理
  • query/ns: 这个能看出是对哪个集合正在执行什么操作
  • lock*:还有一些跟锁相关的参数,需要了解可以看官网文档,本文不做详细介绍

db.currentOp 文档在这里,多看官网文档

    {
        "desc" : "conn632530",
        "threadId" : "140298196924160",
        "connectionId" : 632530,
        "client" : "11.192.159.236:57052",
        "active" : true,
        "opid" : 1008837885,
        "secs_running" : 0,
        "microsecs_running" : NumberLong(70),
        "op" : "update",
        "ns" : "mygame.players",
        "query" : {
            "uid" : NumberLong(31577677)
        },
        "numYields" : 0,
        "locks" : {
            "Global" : "w",
            "Database" : "w",
            "Collection" : "w"
        },
        ....
    },

这里先要明确一下,通过 db.currentOp() 查看正在执行的操作,目的到底是什么?

并不是说我们要将正在执行的操作都列出来,然后通过 killOp 逐个干掉;这一步的目的是要看一下,是否有「意料之外」的耗时请求正在执行。

比如你的业务平时 CPU 利用率不高,运维管理人员连到数据库执行了一些需要全表扫描的操作,然后突然 CPU 利用率飙高,导致你的业务响应很慢,那么就要重点关注下那些执行时间很长的操作。

一旦找到罪魁祸首,拿到对应请求的 opid,执行 db.killOp(opid) 将对应的请求干掉。

如果你的应用一上线,cpu利用率就很高,而且一直持续,通过 db.currentOp 的结果也没发现什么异常请求,可以进入到 Step2 进行更深入的分析。

Step2:分析数据库慢请求

MongoDB 支持 profiling 功能,将请求的执行情况记录到同DB下的 system.profile 集合里,profiling 有3种模式

profiling 设置文档在这里,多看官网文档

  • 关闭 profiling
  • 针对所有请求开启 profiling,将所有请求的执行都记录到 system.profile 集合
  • 针对慢请求 profiling,将超过一定阈值的请求,记录到system.profile 集合

默认请求下,MongoDB 的 profiling 功能是关闭,生产环境建议开启,慢请求阈值可根据需要定制,如不确定,直接使用默认值100ms。

operationProfiling:
  mode: slowOp
  slowOpThresholdMs: 100

基于上述配置,MongoDB 会将超过 100ms 的请求记录到对应DB 的 system.profile 集合里,system.profile 默认是一个最多占用 1MB 空间的 capped collection。

查看最近3条 慢请求,{$natrual: -1} 代表按插入数序逆序
db.system.profile.find().sort({$natrual: -1}).limit(3)

在开启了慢请求 profiling 的情况下(MongoDB 云数据库是默认开启慢请求 profiling的),我们对慢请求的内容进行分析,来找出可优化的点,常见的包括。

profiling的结果输出含义在这里,多看官网文档

CPU杀手1:全表扫描

全集合(表)扫描 COLLSCAN,当一个查询(或更新、删除)请求需要全表扫描时,是非常耗CPU资源的,所以当你在 system.profile 集合 或者 日志文件发现 COLLSCAN 关键字时,就得注意了,很可能就是这些查询吃掉了你的 CPU 资源;确认一下,如果这种请求比较频繁,最好是针对查询的字段建立索引来优化。

一个查询扫描了多少文档,可查看 system.profile 里的 docsExamined 的值,该值越大,请求CPU开销越大。

> 关键字:COLLSCAN、 docsExamined

CPU杀手2:不合理的索引

有的时候,请求即使查询走了索引,执行也很慢,通常是因为合理建立不太合理(或者是匹配的结果本身就很多,这样即使走索引,请求开销也不会优化很多)。

如下所示,假设某个集合的数据,x字段的取值很少(假设只有1、2),而y字段的取值很丰富。

{ x: 1, y: 1 }
{ x: 1, y: 2 }
{ x: 1, y: 3 }
......
{ x: 1, y: 100000}
{ x: 2, y: 1 }
{ x: 2, y: 2 }
{ x: 2, y: 3 }
......
{ x: 1, y: 100000}

要服务 {x: 1: y: 2} 这样的查询

db.createIndex( {x: 1} )         效果不好,因为x相同取值太多
db.createIndex( {x: 1, y: 1} )   效果不好,因为x相同取值太多
db.createIndex( {y: 1 } )        效果好,因为y相同取值很少
db.createIndex( {y: 1, x: 1 } )  效果好,因为y相同取值少

至于{y: 1} 与 {y: 1, x: 1} 的区别,可参考MongoDB索引原理复合索引官方文档 自行理解。

一个走索引的查询,扫描了多少条索引,可查看 system.profile 里的 keysExamined 字段,该值越大,CPU 开销越大。

>关键字:IXSCAN、keysExamined

CPU杀手3:大量数据排序

当查询请求里包含排序的时候,如果排序无法通过索引满足,MongoDB 会在内存李结果进行排序,而排序这个动作本身是非常耗 CPU 资源的,优化的方法仍然是建立索引,对经常需要排序的字段,建立索引。

当你在 system.profile 集合 或者 日志文件发现 SORT 关键字时,就可以考虑通过索引来优化排序。当请求包含排序阶段时, system.profile 里的 hasSortStage 字段会为 true。

> 关键字:SORT、hasSortStage

其他还有诸如建索引,aggregationv等操作也可能非常耗 CPU 资源,但本质上也是上述几种场景;建索引需要全表扫描,而vaggeregation 也是遍历、查询、更新、排序等动作的组合。

Step3: 服务能力评估

经过上述2步,你发现整个数据库的查询非常合理,所有的请求都是高效的走了索引,基本没有优化的空间了,那么很可能是你机器的服务能力已经达到上限了,应该升级配置了(或者通过 sharding 扩展)。

当然最好的情况时,提前对 MongoDB 进行测试,了解在你的场景下,对应的服务能力上限,以便及时扩容、升级,而不是到 CPU 资源用满,业务已经完全撑不住的时候才去做评估。

作者简介

张友东,阿里云技术专家,主要关注分布式存储、NoSQL数据库等技术领域,先后参与TFS(淘宝分布式文件系统)Redis云数据库等项目,目前主要从事MongoDB云数据库的研发工作,致力于让开发者用上最好的MongoDB云服务。

时间: 2024-10-01 04:35:21

MongoDB CPU 利用率高排查的相关文章

jstack命令定位java程序CPU利用率高的代码位置

高手是怎么使用jstack精确找到异常代码的(java程序CPU利用率高的情况) 请jstack神器来帮忙 本文介绍Linux环境下使用jstack定位问题的秘笈s1.[top命令]找到CPU利用率持续比较高的进程,获取[进程号],此处PID为 1289112891 s2.[ps p 12891 -L -o pcpu,pid,tid,time,tname,cmd 命令]找到上述进程中,CPU利用率比较高的[线程号TID](十进制数),此处为 12946ps p 12891 -L -o pcpu,

mongoDb CPU利用率100%的分析和解决

在公司的项目中,突然出现过一个情况,mongodb 的CPU利用率到达100%,导致服务器这边卡死了,请求了半天无响应,提示请求超时. 因为,当时APP用户可能会在某一个时间段集中的使用,所以,请求量一下子就飙上去了,刚好APP打开请求的时候,有一个mongodb的请求. 当时因为Mongodb的服务器不在我们这边,所以一下子没反应过来,不过最后还是给排除出,并解决了.这里就来记录下排查和解决的全过程. 问题分析: 1.根据代码,定位到了是Mongodb的报错. 2.进入Mongodb 服务器的

erlang 调度器CPU利用率低排查

-问题起因 近期线上一组服务中,个别节点服务器CPU使用率很低,只有其他1/4.排除业务不均,曾怀疑是系统top统计错误,从Erlang调度器的利用率调查 找到通过erlang:statistics(scheduler_wall_time) 查看服务器CPU低的机器调度器实际的CPU利用率很高接近100%,而其他机器都不到30%. 分析不同业务服务,发现只有在node 中进程数采用调度器CPU利用低这个问题. -Whatsapp 案例 erlang方面能找到案例不多,幸运的发现whatsapp

mongoDB cpu飙高问题

问题描述: 最近几天生产环境上的mongodb一直在报警,cpu飙高,其他如内存.iops.连接数.磁盘操作等都正常.通过定位业务,发现是由于mongodb的表其中一个查询未建立索引导致,110多W的数据,每秒经历的查询10次左右.但是未建立索引导致数据查询走全表扫描,从而致使导致cpu飙高. 解决方式:db.preservationlog.createIndex({eid:1}) ; 为preservationlog表的eid字段创建索引,问题得以解决. cpu曲线图 mongodb所在服务器

Java进程CPU使用率高排查

近期java应用,CPU使用率一直很高,经常达到100%,通过以下步骤完美解决,分享一下. 1.jps 获取Java进程的PID. 2.jstack pid >> java.txt 导出CPU占用高进程的线程栈. 3.top -H -p PID 查看对应进程的哪个线程占用CPU过高. 4.echo "obase=16; PID" | bc 将线程的PID转换为16进制. 5.在第二步导出的Java.txt中查找转换成为16进制的线程PID.找到对应的线程栈. 6.分析负载高

tomcat7+java压测过程中占用CPU过高排查故障和解决办法

环架构境: 前端haproxy做为反向代理,后端N+1台tomcat+java服务 出现问题: 环境是新搭建的,本周在做压测刚开始的时候正常,随着量的上涨,导致CPU一直暴涨. 解决办法和思路: 1.)先通过top命令查看占用cpu高的PID # 根据top命令查看发现PID为2195和975的的进程占用CPU高达%200+,明显出现故障 2.)通过top -H -p pid命令查看,发现2275 3302 3375这几个进程占用CPU时间8分钟 3.)把线程pid转换为16进制,例如:上面的p

Java线上应用故障之CPU占用高排查与定位

最近线上频繁报警CPU空闲不足,故紧急排查后分享给大家 1.使用top命令,获取占用CPU最高的进程号 2.查看线程号对应的进程信息 命令:ps -ef|grep 22630 3.查看进程对应的线程信息 命令:ps -mp22630-oTHREAD,tid,time | sort -nr| head -15 4.选取第一个线程号,转换成16进制 命令:printf "%x" 22657 结果:5881 5.使用jstack查询出具体的线程状态 命令:jstack 22630|grep

STORM在线业务实践-集群空闲CPU飙高问题排查(转)

最近将公司的在线业务迁移到Storm集群上,上线后遇到低峰期CPU耗费严重的情况.在解决问题的过程中深入了解了storm的内部实现原理,并且解决了一个storm0.9-0.10版本一直存在的严重bug,目前代码已经合并到了storm新版本中,在这篇文章里会介绍这个问题出现的场景.分析思路.解决的方式和一些个人的收获. 背景 首先简单介绍一下Storm,熟悉的同学可以直接跳过这段. Storm是Twitter开源的一个大数据处理框架,专注于流式数据的处理.Storm通过创建拓扑结构(Topolog

Linux下如何查看高CPU占用率线程 LINUX CPU利用率计算

目录(?)[-] proc文件系统 proccpuinfo文件 procstat文件 procpidstat文件 procpidtasktidstat文件 系统中有关进程cpu使用率的常用命令 ps 命令 top命令 单核情况下Cpu使用率的计算 基本思想 总的Cpu使用率计算 计算方法 某一进程Cpu使用率的计算 计算方法 实验数据 某一线程Cpu使用率的计算 计算方法 实验数据 多核情况下cpu使用率的计算 实验一 描述 数据一 数据二 实验二 描述 数据一 数据二 主要问题 Java 系统