pandas时间序列常用操作

目录

  • 一、时间序列是什么
  • 二、时间序列的选取
  • 三、时间序列的生成
  • 四、时间序列的偏移量
  • 五、时间序列的前移或后移
  • 五、时区处理
  • 六、时期及算术运算
  • 七、频率转换

一、时间序列是什么

时间序列在多个时间点观察或测量到的任何事物,很多都是固定频率出现 的,比如每15秒、每5分钟、每月。
padnas提供了一组标准的时间序列处理工具和数据算法,基本的时间序列类型是以时间戳为索引的Series。
当创建一个带有DatetimeIndex的Series时,pandas就会知道对象是一个时间序列,用Numpy的datetime64数据以纳秒形式存储时间。

dates=[
    datetime(2020,1,2),datetime(2020,1,5),datetime(2020,1,7),
    datetime(2020,1,8),datetime(2020,1,10),datetime(2020,1,12)
]
ts=pd.Series(np.random.randn(6),index=dates)
ts
2020-01-02 -0.140776
2020-01-05 0.185088
2020-01-07 0.555777
2020-01-08 0.693348
2020-01-10 -0.213715
2020-01-12 -0.259721
dtype: float64

ts.index
DatetimeIndex(['2020-01-02', '2020-01-05', '2020-01-07', '2020-01-08',
               '2020-01-10', '2020-01-12'],
              dtype='datetime64[ns]', freq=None)

ts.index.dtype
dtype('<M8[ns]')

二、时间序列的选取

传入一个可以被解释为日期的字符串

ts['1/10/2020']
-0.3216128833894315
ts['2020-01-02']
0.47508960825683716

也可以只传入年或月

longer_ts['2021']
2021-01-01 1.596179
2021-01-02 -0.458160
2021-01-03 1.380482
...
2021-12-29 0.343524
2021-12-30 0.040584
2021-12-31 -1.616620
Freq: D, Length: 365, dtype: float64

通过日期进行切片

ts[datetime(2020,1,7):]
2020-01-07 0.555777
2020-01-08 0.693348
2020-01-10 -0.213715
2020-01-12 -0.259721
dtype: float64

ts['1/6/2020':'1/11/2020']
2020-01-07 0.555777
2020-01-08 0.693348
2020-01-10 -0.213715
dtype: float64

三、时间序列的生成

date_range可以生成指定长度的DatetimeIndex

  • 指定开始和结束
pd.date_range('4/1/2020','6/1/2020')
DatetimeIndex(['2020-04-01', '2020-04-02', '2020-04-03', '2020-04-04',
               '2020-04-05', '2020-04-06', '2020-04-07', '2020-04-08',
               '2020-04-09', '2020-04-10', '2020-04-11', '2020-04-12',
               '2020-04-13', '2020-04-14', '2020-04-15', '2020-04-16',
               '2020-04-17', '2020-04-18', '2020-04-19', '2020-04-20',
               '2020-04-21', '2020-04-22', '2020-04-23', '2020-04-24',
               '2020-04-25', '2020-04-26', '2020-04-27', '2020-04-28',
               '2020-04-29', '2020-04-30', '2020-05-01', '2020-05-02',
               '2020-05-03', '2020-05-04', '2020-05-05', '2020-05-06',
               '2020-05-07', '2020-05-08', '2020-05-09', '2020-05-10',
               '2020-05-11', '2020-05-12', '2020-05-13', '2020-05-14',
               '2020-05-15', '2020-05-16', '2020-05-17', '2020-05-18',
               '2020-05-19', '2020-05-20', '2020-05-21', '2020-05-22',
               '2020-05-23', '2020-05-24', '2020-05-25', '2020-05-26',
               '2020-05-27', '2020-05-28', '2020-05-29', '2020-05-30',
               '2020-05-31', '2020-06-01'],
              dtype='datetime64[ns]', freq='D')
  • 指定步长
pd.date_range(start='4/1/2020',periods=20)
-04-04',
               '2020-04-05', '2020-04-06', '2020-04-07', '2020-04-08',
               '2020-04-09', '2020-04-10', '2020-04-11', '2020-04-12',
               '2020-04-13', '2020-04-14', '2020-04-15', '2020-04-16',
               '2020-04-17', '2020-04-18', '2020-04-19', '2020-04-20'],
              dtype='datetime64[ns]', freq='D')
  • 指定偏移量

M:日历月末最后一天

pd.date_range('1/1/2020','12/1/2020',freq='M')
DatetimeIndex(['2020-01-31', '2020-02-29', '2020-03-31', '2020-04-30',
               '2020-05-31', '2020-06-30', '2020-07-31', '2020-08-31',
               '2020-09-30', '2020-10-31', '2020-11-30'],
              dtype='datetime64[ns]', freq='M')

BM:每月的最后个工作日,business end of month

pd.date_range('1/1/2020','12/1/2020',freq='BM')
DatetimeIndex(['2020-01-31', '2020-02-28', '2020-03-31', '2020-04-30',
               '2020-05-29', '2020-06-30', '2020-07-31', '2020-08-31',
               '2020-09-30', '2020-10-30', '2020-11-30'],
              dtype='datetime64[ns]', freq='BM')

自定义时间偏移,如h、4h、1h30min

pd.date_range('1/1/2020',periods=10,freq='1h30min')
DatetimeIndex(['2020-01-01 00:00:00', '2020-01-01 01:30:00',
               '2020-01-01 03:00:00', '2020-01-01 04:30:00',
               '2020-01-01 06:00:00', '2020-01-01 07:30:00',
               '2020-01-01 09:00:00', '2020-01-01 10:30:00',
               '2020-01-01 12:00:00', '2020-01-01 13:30:00'],
              dtype='datetime64[ns]', freq='90T')

四、时间序列的偏移量

名称 偏移量类型 说明
D Day 每日
B BusinessDay 每工作日
H Hour 每小时
T或min Minute 每分
S Second 每秒
L或ms Milli 每毫秒
U Micro 每微秒
M MounthEnd 每月最后一个日历日
BM BusinessMonthEnd 每月最后一个工作日
MS MonthBegin 每月每一个工作日
BMS BusinessMonthBegin 每月第一个工作日
W-MON、W-TUE... Week 指定星期几(MON、TUE、WED、THU、FRI、SAT、SUM)
WOM-1MON、WMON-2MON WeekOfMonth 产生每月第一、第二、第三或第四周的星期几
Q-JAN、Q-FEB... QuaterEnd 对于以指定月份(JAN、FEB、MAR、APR、MAY、JUN、JUL、AUG、SEP、OCT、NOV、DEC)结束的年度,每季度最后一月的最后一个日历日
BQ-JAN、BQ-FEB... BusinessQuaterEnd 对于以指定月份结束的年度,每季度最后一月的最后一个工作日
QS-JAN、QS-FEB... QuaterBegin 对于以指定月份结束的年度,每季度最后一月的第一个日历日
QS-JAN、QS-FEB... BusinessQuaterBegin 对于指定月份结束的年度,每季度最后一月的第一个工作日
A-JAN、A-FEB... YearEnd 每年指定月份的最后一个日历日
BA-JAN、BA-FEB BusinessYearEnd 每年指定月份的最后一个日历日
AS-JAN、AS-FEB YearBegin 每年指定月份的第一个日历日
BAS-JAN、BAS-FEB BusinessYearBegin 每年指定月份的第一个工作日

例如,每月第3个星期五

pd.date_range('1/1/2020','9/1/2020',freq='WOM-3FRI')
DatetimeIndex(['2020-01-17', '2020-02-21', '2020-03-20', '2020-04-17',
               '2020-05-15', '2020-06-19', '2020-07-17', '2020-08-21'],
              dtype='datetime64[ns]', freq='WOM-3FRI')

五、时间序列的前移或后移

shift方法用于执行单纯的前移或后移操作

ts=pd.Series(np.random.randn(4),
            index=pd.date_range('1/1/2020',periods=4,freq='M'))
ts
2020-01-31 0.185458
2020-02-29 0.549704
2020-03-31 0.146584
2020-04-30 0.983613
Freq: M, dtype: float64

向后移动一个月

ts.shift(1,freq='M')
2020-02-29 0.185458
2020-03-31 0.549704
2020-04-30 0.146584
2020-05-31 0.983613
Freq: M, dtype: float64

向前移动3天

ts.shift(-3,freq='D')
2020-01-28 0.185458
2020-02-26 0.549704
2020-03-28 0.146584
2020-04-27 0.983613
dtype: float64

通过Day或MonthEnd移动

from pandas.tseries.offsets import Day,MonthEnd
now=datetime(2020,1,27)
now+3*Day()
Timestamp('2020-01-30 00:00:00')
now+MonthEnd()
Timestamp('2020-01-31 00:00:00')

五、时区处理

python的时区信息来自第三方库pytz,pandas包装了pytz的功能
查看所有时区

pytz.common_timezones

转换时区- tz_convert

rng=pd.date_range('3/9/2020 9:30',periods=6,freq='D',tz='UTC')
ts=pd.Series(np.random.randn(len(rng)),index=rng)
ts
2020-03-09 09:30:00+00:00 -1.779006
2020-03-10 09:30:00+00:00 -0.293860
2020-03-11 09:30:00+00:00 -0.174114
2020-03-12 09:30:00+00:00 0.749316
2020-03-13 09:30:00+00:00 0.342134
2020-03-14 09:30:00+00:00 1.101283
Freq: D, dtype: float64

ts.tz_convert('Asia/Shanghai')
2020-03-09 17:30:00+08:00 -1.779006
2020-03-10 17:30:00+08:00 -0.293860
2020-03-11 17:30:00+08:00 -0.174114
2020-03-12 17:30:00+08:00 0.749316
2020-03-13 17:30:00+08:00 0.342134
2020-03-14 17:30:00+08:00 1.101283
Freq: D, dtype: float64

六、时期及算术运算

时期(period)表示的是时间区间,比如数日、数月、数季、数年等
下面这个Period对象表示从2020年1月1日到2020年12月31日之间的整段时间

p=pd.Period(2020,freq='A-DEC')
p
Period('2020', 'A-DEC')

创建规则的时期范围

#季度为Q生成13个时间
pd.period_range("2019-01", periods=13, freq="Q")

#Q代表季度为频率,默认的后缀为DEC代表一年以第1个月为结束【最后一个月为1月份】
pd.period_range("2019-01", periods=13, freq="Q-JAN")

# 以季度Q【年为频率】生成13个时间
pd.period_range("2019-01", periods=13, freq="Y")

#以季度Q【2个月为频率】生成13个时间
pd.period_range("2019-01", periods=13, freq="2m")

PeriodIndex类保存了一组Period,可以在pandas数据结构中用作轴索引

rng=pd.period_range('1/1/2020','6/30/2020',freq='M')
rng
PeriodIndex(['2020-01', '2020-02', '2020-03', '2020-04', '2020-05', '2020-06'], dtype='period[M]', freq='M')

pd.Series(np.random.randn(6),rng)
2020-01 -1.050150
2020-02 -0.828435
2020-03 1.648335
2020-04 1.476485
2020-05 0.779732
2020-06 -1.394688
Freq: M, dtype: float64

使用字符串创建PeriodIndex
Q代表季度为频率,默认的后缀为DEC代表一年以第12个月为结束

pd.PeriodIndex(['2020Q3','2020Q2','2020Q1'],freq='Q-DEC')

Period和PeriodIndex互转-asfreq

p=pd.Period('2020',freq='A-DEC')
p.asfreq('M',how='start')
Period('2020-01', 'M')

p=pd.Period('2020-08',freq='M')
p.asfreq('A-JUN')
Period('2021', 'A-JUN')

to_period可以将datetime转period

rng=pd.date_range('1/1/2020',periods=6,freq='D')
ts=pd.Series(np.random.randn(6),index=rng)

ts
2020-01-01 -1.536552
2020-01-02 -0.550879
2020-01-03 0.601546
2020-01-04 -0.103521
2020-01-05 0.445024
2020-01-06 1.127598
Freq: D, dtype: float64

ts.to_period('M')
2020-01 -1.536552
2020-01 -0.550879
2020-01 0.601546
2020-01 -0.103521
2020-01 0.445024
2020-01 1.127598
Freq: M, dtype: float64

to_timespame可以将Period转换为时间戳

ts.to_period('M').to_timestamp()

七、频率转换

重采样(resampling)指将时间序列从一个频率转换到另一个频率的处理过程
pandas对象都带有一个resample方法,是各种频率转换的函数

降采样率

#查看100天的采样
rng=pd.date_range('1/1/2020',periods=100,freq='D')
ts=pd.Series(np.random.randn(len(rng)),index=rng)

# 转为一月的
ts.resample('M').mean()
2020-01-31 -0.049213
2020-02-29 -0.155195
2020-03-31 -0.000091
2020-04-30 -0.023561
Freq: M, dtype: float64

分钟的采样转为5分钟的

rng=pd.date_range('1/1/2020',periods=12,freq='T')
ts=pd.Series(np.random.randn(len(rng)),index=rng)
ts.resample('5min').sum()

2020-01-01 00:00:00 1.376219
2020-01-01 00:05:00 0.883248
2020-01-01 00:10:00 -0.939534
Freq: 5T, dtype: float64

通过groupby进行采样,传入一个能够访问时间序列的索引上字段的函数

rng=pd.date_range('1/1/2020',periods=100,freq='D')
ts=pd.Series(np.random.randn(len(rng)),index=rng)

ts.groupby(lambda x:x.month).mean()
2020-01-31 0.182420
2020-02-29 0.200134
2020-03-31 -0.108818
2020-04-30 -0.187426
Freq: M, dtype: float64

升采样率
示例: 周数据l转为日

# 周数据l
frame=pd.DataFrame(
np.random.randn(2,4),
index=pd.date_range('1/1/2020',periods=2,freq='W-WED'),
columns=['Colorado','Texa','New York','Ohio']
)
# #转为日
frame.resample('D').asfreq()
#用前面的值填充
frame.resample('D').ffill()
#用后面的值填充
frame.resample('D').bfill()

原文地址:https://www.cnblogs.com/chenqionghe/p/12237010.html

时间: 2024-11-05 14:49:40

pandas时间序列常用操作的相关文章

Pandas常用操作

参考天池AI github博客传送门 csdn博客传送门 安装pandas 通过命令提示符 pip install pandas 或者通过第三方发放版 Anaconda 进行鼠标操作安装 Numpy学习教程传送门 https://blog.csdn.net/zhanghao3389/article/details/82791862 Series 的创建 import numpy as np, pandas as pd # 通过一维数组创建序列 arr1 = np.arange(10) # 创建一

Python——Pandas 时间序列数据处理

介绍 Pandas 是非常著名的开源数据处理库,我们可以通过它完成对数据集进行快速读取.转换.过滤.分析等一系列操作.同样,Pandas 已经被证明为是非常强大的用于处理时间序列数据的工具.本节将介绍所有 Pandas 在时间序列数据上的处理方法. 知识点 创建时间对象 时间索引对象 时间算术方法 创建时间对象 在 Pandas 中关于时间序列的常见对象有 6 种,分别是 Timestamp(时间戳).DatetimeIndex(时间戳索引).Period(时间段).PeriodIndex(时间

Python 字典的特点和常用操作

一.字典帮助文档 >>> dir(dict) ['__class__', '__cmp__', '__contains__', '__delattr__', '__delitem__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__init__', '__iter__', '__le__', '__len__', '__lt

postgresql的ALTER常用操作

postgresql版本:psql (9.3.4) 1.增加一列ALTER TABLE table_name ADD column_name datatype; 2.删除一列 ALTER TABLE table_name DROP column_name; 3.更改列的数据类型 ALTER TABLE table_name ALTER column_name TYPE datatype; 4.表的重命名 ALTER TABLE table_name RENAME TO new_name; 5.更

Mysql数据库常用操作

1.备份数据库 [[email protected] ~]# mysqldump -h 192.168.0.8 -uroot  -p'123456'  user >user.sql 2.查看mysql数据库字符集设置 mysql> show variables like 'character_set_%';+--------------------------+----------------------------+| Variable_name            | Value    

多路径软件常用操作(MPIO)

一:查看存储盘的路径 1. 查看MPIO的存储盘的路径 # lspath (适用于所有存储的MPIO路径查询) # mpio_get_config -Av (适用于DS3K/DS4K的MPIO路径查询) 2. 查看RDAC存储盘的路径 # fget_config -Av (适用于DS3K/DS4K的RDAC路径查询) 3.查看SDDPCM存储盘的路径 # pcmpath query device (适用于DS6K/DS8K和v7000的SDDPCM路径查询) 4. 查看当前操作系统自带的支持IB

Python学习笔记五:字符串常用操作,字典,三级菜单实例

字符串常用操作 7月19日,7月20日 ,7月22日,7月29日,8月29日,2月29日 首字母大写:a_str.capitalize() 统计字符串个数:a_str.count("x") 输出字符,不够的使用指定的字符补上,字符居中:a_str.center(50,"-") 判断字符串以什么结尾:a_str.endwith("xx") 将字符串中的tab转换为指定数目的空格:a_str.expandtabs(tabsize=30) 查找指定字符

jQuery的常用操作

梳理一下jQuery的常用操作 jQuery隐藏显示对象 id为test的元素的display修改成了"none",即隐藏了id为test的元素:$('#test').css('display','none') 或 $('#test').style.display="none" 我们经常用到的是切换一个元素的隐藏与现实,下面给出代码: var show = $('#test').css('display');//获取id为test的元素的display的值$('#t

MongoDB常用操作

1.MongoDB常用操作 1.1数据库的操作命令 1.创建数据库,使用命令 use 数据库名称 ,如 use sxf. *注意: 1.use 命令后跟的数据库名,如果存在就进入此数据库,如果不存在就创建,所以这种创建方式又叫隐式创建 2.使用命令use sxf创建数据库后,并没有真正生成对应的数据文件,如果此时退出,此数据库将被删除,只有在此数据库中创建集合后,才会真正生成数据文件 2. 删除当前数据库,使用命令 db.dropDatabase() 3.查看所有数据库,使用命令 show db