Python Elasticsearch DSL 查询、过滤、聚合操作实例

github.com/yongxinz/te…

Elasticsearch 基本概念

Index:Elasticsearch用来存储数据的逻辑区域,它类似于关系型数据库中的database 概念。一个index可以在一个或者多个shard上面,同时一个shard也可能会有多个replicas。

Document:Elasticsearch里面存储的实体数据,类似于关系数据中一个table里面的一行数据。

document由多个field组成,不同的document里面同名的field一定具有相同的类型。document里面field可以重复出现,也就是一个field会有多个值,即multivalued。

Document type:为了查询需要,一个index可能会有多种document,也就是document type. 它类似于关系型数据库中的 table 概念。但需要注意,不同document里面同名的field一定要是相同类型的。

Mapping:它类似于关系型数据库中的 schema 定义概念。存储field的相关映射信息,不同document type会有不同的mapping。

下图是ElasticSearch和关系型数据库的一些术语比较:

Relationnal database Elasticsearch
Database Index
Table Type
Row Document
Column Field
Schema Mapping
Schema Mapping
Index Everything is indexed
SQL Query DSL
SELECT * FROM table… GET http://…
UPDATE table SET PUT http://…

Python Elasticsearch DSL 使用简介

连接 Es:

import elasticsearch

es = elasticsearch.Elasticsearch([{‘host‘: ‘127.0.0.1‘, ‘port‘: 9200}])

先看一下搜索,q 是指搜索内容,空格对 q 查询结果没有影响,size 指定个数,from_ 指定起始位置,filter_path 可以指定需要显示的数据,如本例中显示在最后的结果中的只有 _id 和 _type

res_3 = es.search(index="bank", q="Holmes", size=1, from_=1)
res_4 = es.search(index="bank", q=" 39225    5686 ", size=1000, filter_path=[‘hits.hits._id‘, ‘hits.hits._type‘])

查询指定索引的所有数据:

其中,index 指定索引,字符串表示一个索引;列表表示多个索引,如 index=["bank", "banner", "country"];正则形式表示符合条件的多个索引,如 index=["apple*"],表示以 apple 开头的全部索引。

search 中同样可以指定具体 doc-type

from elasticsearch_dsl import Search

s = Search(using=es, index="index-test").execute()
print s.to_dict()

根据某个字段查询,可以多个查询条件叠加:

s = Search(using=es, index="index-test").query("match", sip="192.168.1.1")
s = s.query("match", dip="192.168.1.2")
s = s.excute()

多字段查询:

from elasticsearch_dsl.query import MultiMatch, Match

multi_match = MultiMatch(query=‘hello‘, fields=[‘title‘, ‘content‘])
s = Search(using=es, index="index-test").query(multi_match)
s = s.execute()

print s.to_dict()

还可以用 Q() 对象进行多字段查询,fields 是一个列表,query 为所要查询的值。

from elasticsearch_dsl import Q

q = Q("multi_match", query="hello", fields=[‘title‘, ‘content‘])
s = s.query(q).execute()

print s.to_dict()

Q() 第一个参数是查询方法,还可以是 bool

q = Q(‘bool‘, must=[Q(‘match‘, title=‘hello‘), Q(‘match‘, content=‘world‘)])
s = s.query(q).execute()

print s.to_dict()

通过 Q() 进行组合查询,相当于上面查询的另一种写法。

q = Q("match", title=‘python‘) | Q("match", title=‘django‘)
s = s.query(q).execute()
print(s.to_dict())
# {"bool": {"should": [...]}}

q = Q("match", title=‘python‘) & Q("match", title=‘django‘)
s = s.query(q).execute()
print(s.to_dict())
# {"bool": {"must": [...]}}

q = ~Q("match", title="python")
s = s.query(q).execute()
print(s.to_dict())
# {"bool": {"must_not": [...]}}

过滤,在此为范围过滤,range 是方法,timestamp 是所要查询的 field 名字,gte 为大于等于,lt 为小于,根据需要设定即可。

关于 term 和 match 的区别,term 是精确匹配,match 会模糊化,会进行分词,返回匹配度分数,(term 如果查询小写字母的字符串,有大写会返回空即没有命中,match 则是不区分大小写都可以进行查询,返回结果也一样)

# 范围查询
s = s.filter("range", timestamp={"gte": 0, "lt": time.time()}).query("match", country="in")
# 普通过滤
res_3 = s.filter("terms", balance_num=["39225", "5686"]).execute()

其他写法:

s = Search()
s = s.filter(‘terms‘, tags=[‘search‘, ‘python‘])
print(s.to_dict())
# {‘query‘: {‘bool‘: {‘filter‘: [{‘terms‘: {‘tags‘: [‘search‘, ‘python‘]}}]}}}

s = s.query(‘bool‘, filter=[Q(‘terms‘, tags=[‘search‘, ‘python‘])])
print(s.to_dict())
# {‘query‘: {‘bool‘: {‘filter‘: [{‘terms‘: {‘tags‘: [‘search‘, ‘python‘]}}]}}}
s = s.exclude(‘terms‘, tags=[‘search‘, ‘python‘])
# 或者
s = s.query(‘bool‘, filter=[~Q(‘terms‘, tags=[‘search‘, ‘python‘])])
print(s.to_dict())
# {‘query‘: {‘bool‘: {‘filter‘: [{‘bool‘: {‘must_not‘: [{‘terms‘: {‘tags‘: [‘search‘, ‘python‘]}}]}}]}}}

聚合可以放在查询,过滤等操作的后面叠加,需要加 aggs

bucket 即为分组,其中第一个参数是分组的名字,自己指定即可,第二个参数是方法,第三个是指定的 field

metric 也是同样,metric 的方法有 sumavgmaxmin 等,但是需要指出的是,有两个方法可以一次性返回这些值,stats 和 extended_stats,后者还可以返回方差等值。

# 实例1
s.aggs.bucket("per_country", "terms", field="timestamp").metric("sum_click", "stats", field="click").metric("sum_request", "stats", field="request")

# 实例2
s.aggs.bucket("per_age", "terms", field="click.keyword").metric("sum_click", "stats", field="click")

# 实例3
s.aggs.metric("sum_age", "extended_stats", field="impression")

# 实例4
s.aggs.bucket("per_age", "terms", field="country.keyword")

# 实例5,此聚合是根据区间进行聚合
a = A("range", field="account_number", ranges=[{"to": 10}, {"from": 11, "to": 21}])

res = s.execute()

最后依然要执行 execute(),此处需要注意,s.aggs 操作不能用变量接收(如 res=s.aggs,这个操作是错误的),聚合的结果会保存到 res 中显示。

排序

s = Search().sort(
    ‘category‘,
    ‘-title‘,
    {"lines" : {"order" : "asc", "mode" : "avg"}}
)

分页

s = s[10:20]
# {"from": 10, "size": 10}

一些扩展方法,感兴趣的同学可以看看:

s = Search()

# 设置扩展属性使用`.extra()`方法
s = s.extra(explain=True)

# 设置参数使用`.params()`
s = s.params(search_type="count")

# 如要要限制返回字段,可以使用`source()`方法
# only return the selected fields
s = s.source([‘title‘, ‘body‘])
# don‘t return any fields, just the metadata
s = s.source(False)
# explicitly include/exclude fields
s = s.source(include=["title"], exclude=["user.*"])
# reset the field selection
s = s.source(None)

# 使用dict序列化一个查询
s = Search.from_dict({"query": {"match": {"title": "python"}}})

# 修改已经存在的查询
s.update_from_dict({"query": {"match": {"title": "python"}}, "size": 42})

参考文档:

fingerchou.com/2017/08/12/…

fingerchou.com/2017/08/13/…

blog.csdn.net/JunFeng666/…

原文地址:https://www.cnblogs.com/lianhaifeng/p/11875835.html

时间: 2024-11-08 12:45:50

Python Elasticsearch DSL 查询、过滤、聚合操作实例的相关文章

mongo中的高级查询之聚合操作(distinct,count,group)

1.distinct的实现: db.consumerecords.distinct("userId"):键值去重  类似于mysql中的 select distinct userId from consumerecords db.consumerecords.distinct("userId",{act:"charge"}):过滤之后去重,类似于mysql中的select distinct userId from consumerecords w

Python Elasticsearch API操作ES集群

环境 Centos 7.4 Python 2.7 Pip 2.7 MySQL-python 1.2.5 Elasticsearc 6.3.1 Elasitcsearch6.3.2 知识点 调用Python Elasticsearh API Python Mysqldb使用 DSL查询与聚合 Pyehon 列表操作 代码 #!/usr/bin/env python # -*- coding: utf-8 -*- #minyt 2018.9.1 #获取24小时内出现的模块次数 # 该程序通过elas

ElasticSearch常用操作:查询与聚合篇

[TOC] 0 说明 基于es 5.4和es 5.6,列举的是个人工作中经常用到的查询(只是工作中使用的是Java API),如果需要看完整的,可以参考官方相关文档https://www.elastic.co/guide/en/elasticsearch/reference/5.4/search.html. 1 查询 先使用一个快速入门来引入,然后后面列出的各种查询都是用得比较多的(在我的工作环境是这样),其它没怎么用的这里就不列出了. 1.1 快速入门 1.1.1 查询全部 GET index

[Elasticsearch] 过滤查询以及聚合(Filtering Queries and Aggregations)

本章翻译自Elasticsearch官方指南的Filtering Queries and Aggregations一章. 过滤查询以及聚合 A natural extension to aggregation scoping is filtering. Because the aggregation operates in the context of the query scope, any filter applied to the query will also apply to the

《Entity Framework 6 Recipes》中文翻译系列 (27) ------ 第五章 加载实体和导航属性之关联实体过滤、排序、执行聚合操作

翻译的初衷以及为什么选择<Entity Framework 6 Recipes>来学习,请看本系列开篇 5-9  关联实体过滤和排序 问题 你有一实体的实例,你想加载应用了过滤和排序的相关实体. 解决方案 假设你有如图5-24所示的概念模型 图5-24 一个酒店预定系统的模型 假设我们有一个酒店(Hotel)实体,使用代码清单5-22,获取酒店的商务套房(executive suite),查看是否被预定,并按房价排序. 代码清单5-22.通过方法Entry()和Query()显式加载实体集合,

ElasticSearch 常用的查询过滤语句

query 和  filter 的区别请看: http://www.cnblogs.com/ghj1976/p/5292740.html    Filter DSL   term 过滤 term主要用于精确匹配哪些值,比如数字,日期,布尔值或 not_analyzed 的字符串(未经分析的文本数据类型): { "term": { "age":    26           }} { "term": { "date":   &

通过游戏学python 3.6 第一季 第九章 实例项目 猜数字游戏--核心代码--猜测次数--随机函数和屏蔽错误代码--优化代码及注释--简单账号密码登陆--账号的注册查询和密码的找回修改--锁定账号--锁定次数--菜单功能&#39;menufile

通过游戏学python 3.6 第一季 第九章 实例项目 猜数字游戏--核心代码--猜测次数--随机函数和屏蔽错误代码--优化代码及注释--简单账号密码登陆--账号的注册查询和密码的找回修改--锁定账号--锁定次数--菜单功能'menufile 1 #猜数字--核心代码--猜测次数--随机函数和屏蔽错误代码---优化代码及注释--简单账号密码登陆--账号的注册查询和密码的找回修改--锁定账号--锁定次数--菜单功能'menufile' 2 #!usr/bin/env python 3 #-*-c

elasticsearch聚合操作——本质就是针对搜索后的结果使用桶bucket(允许嵌套)进行group by,统计下分组结果,包括min/max/avg

分析 Elasticsearch有一个功能叫做聚合(aggregations),它允许你在数据上生成复杂的分析统计.它很像SQL中的GROUP BY但是功能更强大. 举个例子,让我们找到所有职员中最大的共同点(兴趣爱好)是什么: GET .monitoring-es-6-2018.08.16/_search{ "aggs": { "all_interests": { "terms": { "field": "sour

ElasticSearch操作实例大全---文档结构操作(2)

接上一篇ElasticSearch操作实例大全---文档结构操作(1) 前提条件--开发环境已安装 (自行百度) 客户端用的是nest 学习elasticSearch主要是要掌握像sqlserver要会操作数据结构的增删改和数据的增删改查,这里主要写elasticSearch的文档结构操作和文档数据操作 一.如果你已经建好了索引,但是需求改变需要新增一个字段,那就改了之后要进行映射,映射主要是确定字段的数据类型 /// <summary> /// 创建mapping /// </summ