对分治法思想的体会

分治法的基本思想是什么?

分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。

更准确地说是,将规模为n的问题分解为k个规模较小的子问题,这些子问题相互独立且与原问题相同。递归地解决子问题,然后将解合并得到原问题的解。

什么情况下使用分治法?

分治法所能解决的问题一般具有以下几个特征:

1) 该问题的规模缩小到一定的程度就可以容易地解决;

2) 该问题可以分解为若干个规模较小的与原问题相同的问题;

3) 利用该问题分解出的子问题的解可以合并为该问题的解;

4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。

引用来自百度词条的补充(方便学了贪心算法和动态规划法后回头理解):

子问题的解能否合并为原问题的解是关键,若不具备此特征,则可以考虑用贪心法或动态规划法;

子问题相互独立的特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。

结对编程的体会

在和队友沟通的过程中遇到了表达上的障碍,下次多想点办法表达清楚。

我希望能在以后的结对编程中主要提高口头表达能力、阅读和理解他人代码的能力、debug的能力。

原文地址:https://www.cnblogs.com/Texas/p/11681980.html

时间: 2024-10-08 22:17:48

对分治法思想的体会的相关文章

对分治法思想的体会及结对编程情况汇报

1.对分治法思想的体会 分治法就是将问题分解为规模更小的子问题,通过一一解决这些子问题,再将这些已经解决了的子问题合并起来,就得到了原问题的解.通过分治法的思想,我们可以更加轻松的解决规模很大的问题,也使得代码更加清晰,易于理解.我们在大一的时候其实已经接触过分治法的思想了,像二分查找,就是利用了分治法思想,使得查找算法的时间复杂度更低. 2.结对编程情况汇报 我和我的搭档一般情况下是独立编程,但是当我们其中一个或着两个人遇到编程难题时,就会互相讨论,一起寻找合适的算法去解决问题. 在之后的学习

对分治法思想的体会 & 结对编程情况汇报

一.对分治思想的体会 1.帮助我们解决问题. 分治法,对大的问题拆封成规模较小的问题,我们求解小问题,再把小问题的答案合并起来,得出大问题的答案.大问题思考起来比较乱,犯迷糊,不易想到解决方法,比如汉诺塔问题.分解成小问题,我们就容易想出方法来解决问题 2.时间复杂度低 分治法思想核心是递归,递归的时间复杂度低.算法的复杂度低,提高了算法的质量 二.结对编程情况汇报 3道题都做完且答案正确,第三道题,没有按时间复杂度为O(logn)编程,后来查找资料知道如何写出O(logn)的算法.第一题,开始

分治法思想与体会

分治,即分而治之,是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同.递归地解决这些子问题,然后将各子问题的解合并得到原文题的解.其算法设计模式如下: divide-and-conquer(P){ if (|P|<=n0) adhoc(P); divide P into smaller subinstances P1,P2,...,Pk; for (i=1; i<=k; i++) yi = divide-and-conquer(Pi); return merge

对二分法思想的体会及结对编程情况汇报

一.对二分法思想的体会 二分法主要用于有序数组中查找元素,其时间复杂度相比之下更小. 不断变换指针位置缩小查找区间范围. 其主要代码为: 二.结对编程情况汇报 和能力强的同学一起组队,有很多值得学习的地方,比如算法思想.代码风格,甚至快捷键的使用. 探讨思想后合作完成代码,可以理清思路再动手实践,收获颇丰. 原文地址:https://www.cnblogs.com/Wqxxxx--/p/9795146.html

最小点对分治法(洛谷1257)

题目描述 给定平面上n个点,找出其中的一对点的距离,使得在这n个点的所有点对中,该距离为所有点对中最小的 输入样例#1: 3 1 1 1 2 2 2 输出样例#1: 1.0000首先我们将x坐标排一个序,然后运用分治的思想,分为两块,递归求解两块中的最小点对,但是两块的并集也可能产生点对,但是产生的条件是并集中的两点的距离比d(d是两块中的最小点对)小,所以横纵坐标到中点m的距离也要小于d才能满足要求,我们画图可知,最多只有六个点对应一个点满足要求,所以在时间复杂的上也是o(nlogn)的算法放

分治法二(平面最近点对)

上篇文章介绍了分治法的概念和基本解题步骤,并附加了一个例题帮助大家了解分治法的基本思想,在这篇文章中,我将对分治法的另一个经典问题进行分析,希望我的文章能够将今天的主题解释清楚.接下来我将用三种不同的方法求解"平面最近点对"问题. 问题描述:在一个平面上随机分布着 n 个点,现给定 n 个点的坐标,要求给出最近的两个点之间的距离. 方法一:原始方法 题目要求求出最近的两点之间的距离,先整理一下已知的线索:首先点的总个数为 n :其次已知 n 个点的坐标.掌握了每个点的坐标,就相当于间接

基于分治法的找秩(maxium rank finding)策略

rank finding 问题的概述如下: 在一群离散的点中,检查对于每个点,是否有x值和y值都小于它的点,若有,则该点的秩为这些小于它的点的数量. 分治法思想: 以界面上所有点中x值的中位数为基准,递归地把目标区域分成两部分,直到每个区域中的点在一个以下,对于每一个细小的区域,检查其left child区域中的点的y值和right child区域中的点的y值,以对right child中的点的秩进行统计. 该方法通过分治排除了水平位置不符合标准的点,有效的减少了统计次数. 代码示例如下: #i

2.3.1 分治法

插入排序使用了增量方法:在排序子数组A[1..j-1]后,将单个元素A[j]插入子数组的适当位置,产生排序好的子数组A[1..j]. 分治法,该算法的最坏情况运行时间比插入排序要少得多.分治算法的优点之一是,通过使用第4章介绍的技术往往很容易确定其运行时间. 分治法 许多有用的算法在结构上是递归的:为了解决一个给定的问题,算法一次或多次递归地调用其自身以解决紧密相关的若干子问题.这些算法典型地遵循分治法思想:将原问题分解为几个规模较小但类似于原问题的子问题,递归地求解这些子问题,然后再合并这些子

【分治法】最接近点对问题(转)

转自:http://blog.csdn.net/liufeng_king/article/details/8484284 问题场景:在应用中,常用诸如点.圆等简单的几何对象代表现实世界中的实体.在涉及这些几何对象的问题中,常需要了解其邻域中其他几何对象的信息.例如,在空中交通控制问题中,若将飞机作为空间中移动的一个点来看待,则具有最大碰撞危险的2架飞机,就是这个空间中最接近的一对点.这类问题是计算几何学中研究的基本问题之一. 问题描述:给定平面上n个点,找其中的一对点,使得在n个点的所有点对中,