Kafka Consumer Lag Monitoring

Sematext Monitoring  是最全面的Kafka监视解决方案之一,可捕获约200个Kafka指标,包括Kafka Broker,Producer和Consumer指标。尽管其中许多指标很有用,但每个人都有一个要监视的特定指标–消费者滞后。

什么是卡夫卡消费者滞后?

卡夫卡消费者滞后指标表明卡夫卡生产者和消费者之间存在多少滞后。人们谈论卡夫卡时,通常指的是卡夫卡经纪人。您可以将Kafka Broker视为Kafka服务器。代理实际上是存储和提供Kafka消息的对象。Kafka生产者是将消息写入Kafka(经纪人)的应用程序。Kafka使用者是从Kafka(Brokers)读取消息的应用程序。

内部经纪人数据存储在一个或多个主题中,每个主题由一个或多个分区组成。当写入数据时,代理实际上会将其写入特定的分区。在写入数据时,它会跟踪每个分区中的最后一个“写入位置”。这称为最新偏移,也称为对数结束偏移。每个分区都有自己独立的最新偏移量。

就像Broker跟踪每个分区中的写入位置一样,每个Consumer跟踪每个正在消耗其数据的分区中的“读取位置”。也就是说,它跟踪已读取的数据。这被称为消费者抵销。消费者偏移量会定期存在(到ZooKeeper或Kafka本身的特殊主题),因此它可以承受消费者崩溃或不正常关机的情况,并避免重复使用过多的旧数据。

卡夫卡消费者滞后率和读/写率

在上面的图表中,我们可以看到黄色的条形,代表着经纪人编写生产者创建的消息的速率。橙色条形表示消费者从经纪人那里消费消息的速率。费率看起来大致相等-必须保持一致,否则消费者将落后。但是,在写入消息和使用消息之间始终会有一些延迟。读取总是落后于写入,这就是我们所说的“消费者滞后”。消费者滞后时间只是最新偏移量和消费者偏移量之间的增量。

为什么消费者滞后很重要

如今,许多应用程序都是基于能够处理(接近)实时数据的。考虑一下性能监控系统(例如Sematext Monitoring)或日志管理服务(例如Sematext Logs)。他们连续不断地处理无限量的近实时数据。如果它们向您显示指标或日志的时间过长-如果“消费者滞后”过大-它们将几乎无用。消费者滞后告诉我们每个分区中每个消费者(组)落后多远。滞后时间越短,实时数据消耗就越大。

监视读写速率

卡夫卡消费者滞后和经纪人抵销变化

正如我们刚刚了解到的,“最新偏移量”与“消费者偏移量”之间的差异是导致我们“消费者滞后”的原因。在上面的Sematext图表中,您可能已经注意到其他一些指标:

  • 经纪人写率
  • 消耗率
  • 经纪人最早的抵销变动

速率指标是派生的指标。如果您查看Kafka的指标,您将找不到它们。在后台,开源Sematext代理收集了一些Kafka指标具有各种偏移量,可从这些偏移量计算这些费率。此外,它还绘制了经纪人最早的偏移量变化图,这是每个经纪人分区中已知的最早的偏移量。换句话说,此偏移量是分区中最旧消息的偏移量。尽管仅靠偏移量可能并不是超级有用,但当情况出现问题时,了解其变化情况可能会很方便。Kafka中的数据具有一定的TTL(生存时间),可以轻松清除旧数据。该清除操作由Kafka本身执行。每次清除都会使最旧数据的偏移量发生变化。Sematext的经纪人最早的抵销更改会浮出水面,以便您进行监控。该指标使您了解清除的频率以及每次运行时清除的消息数量。

Kafka监控工具

那里有几种Kafka监控工具,例如  LinkedIn的Burrow,其Sematext中使用了Kafka Offset监控和Consumer Lag监控方法。我们在Kafka开源监控工具中编写了各种开源监控工具。如果您需要一个好的Kafka监控解决方案,请尝试使用Sematext。将您的Kafka和其他日志发送到Sematext Logs中,您便拥有了一个DevOps解决方案,该解决方案使故障排除变得容易而不是麻烦。

is one of the most comprehensive Kafka monitoring solutions, capturing some 200 Kafka metrics, including Kafka Broker, Producer, and Consumer metrics. While lots of those metrics are useful, there is one particular metric everyone wants to monitor – Consumer Lag.

What is Kafka Consumer Lag?

Kafka Consumer Lag is the indicator of how much lag there is between Kafka producers and consumers. When people talk about Kafka they are typically referring to Kafka Brokers. You can think of a Kafka Broker as a Kafka server. A Broker is what actually stores and serves Kafka messages. Kafka Producers are applications that write messages into Kafka (Brokers). Kafka Consumers are applications that read messages from Kafka (Brokers).

Inside Brokers data is stored in one or more Topics, and each Topic consists of one or more Partitions. When writing data a Broker actually writes it into a specific Partition. As it writes data it keeps track of the last “write position” in each Partition. This is called Latest Offset also known as Log End Offset. Each Partition has its own independent Latest Offset.

Just like Brokers keep track of their write position in each Partition, each Consumer keeps track of “read position” in each Partition whose data it is consuming. That is, it keeps track of which data it has read. This is known as Consumer Offset. This Consumer Offset is periodically persisted (to ZooKeeper or a special Topic in Kafka itself) so it can survive Consumer crashes or unclean shutdowns and avoid re-consuming too much old data.

Kafka Consumer Lag and Read/Write Rates

In our diagram above we can see yellow bars, which represents the rate at which Brokers are writing messages created by Producers.  The orange bars represent the rate at which Consumers are consuming messages from Brokers. The rates look roughly equal – and they need to be, otherwise the Consumers will fall behind.  However, there is always going to be some delay between the moment a message is written and the moment it is consumed. Reads are always going to be lagging behind writes, and that is what we call Consumer Lag. The Consumer Lag is simply the delta between the Latest Offset and Consumer Offset.

Why is Consumer Lag Important

Many applications today are based on being able to process (near) real-time data. Think about performance monitoring system like Sematext Monitoring or log management service like Sematext Logs. They continuously process infinite streams of near real-time data. If they were to show you metrics or logs with too much delay – if the Consumer Lag were too big – they’d be nearly useless.  This Consumer Lag tells us how far behind each Consumer (Group) is in each Partition.  The smaller the lag the more real-time the data consumption.

Monitoring Read and Write Rates

Kafka Consumer Lag and Broker Offset Changes

As we just learned the delta between the Latest Offset and the Consumer Offset is what gives us the Consumer Lag.  In the above chart from Sematext you may have noticed a few other metrics:

  • Broker Write Rate
  • Consume Rate
  • Broker Earliest Offset Changes

The rate metrics are derived metrics.  If you look at Kafka’s metrics you won’t find them there.  Under the hood the open source Sematext agent collects a few Kafka metrics with various offsets from which these rates are computed.  In addition, it charts Broker Earliest Offset Changes, which is  the earliest known offset in each Broker’s Partition.  Put another way, this offset is the offset of the oldest message in a Partition.  While this offset alone may not be super useful, knowing how it’s changing could be handy when things go awry.  Data in Kafka has a certain TTL (Time To Live) to allow for easy purging of old data.  This purging is performed by Kafka itself.  Every time such purging kicks in the offset of the oldest data changes.  Sematext’s Broker Earliest Offset Change surfaces this information for your monitoring pleasure.  This metric gives you an idea how often purges are happening and how many messages they’ve removed each time they ran.

Kafka Monitoring Tools

There are several Kafka monitoring tools out there that, like LinkedIn’s Burrow, whose Kafka Offset monitoring and Consumer Lag monitoring approach is used in Sematext.  We’ve written various open source monitoring tools in Kafka Open Source Monitoring Tools. If you need a good Kafka monitoring solution, give Sematext a go.  Ship your Kafka and other logs into Sematext Logs and you’ve got yourself a DevOps solution that will make troubleshooting easy instead of dreadful.

原文地址:https://www.cnblogs.com/a00ium/p/11692273.html

时间: 2024-11-13 11:13:12

Kafka Consumer Lag Monitoring的相关文章

burrow+telegraf+Grafana实现Kafka Consumer Lag监控

kafka监控工具比较多,有kafka monitor,kafka manager, kafka eagle,KafkaOffsetMonitor 等,但是监控consumer lag最好用的当属burrow. Burrow是linkedin开源的一个监控Apache Kafka的工具,burrow可以将消费者滞后检查作为一项服务来对外提供. 它监视所有消费者的承诺偏移量,并根据需要计算消费者的状态,提供HTTP endpoint接口来获取消费者状态,能够监控Consumer消费消息的延迟,从而

使用 Python 监控 Kafka Consumer LAG

我在要完成这个需求的时候大概有两个思路. 第一种方法: 我们直接使用 Kafka 提供的 bin 工具,去把我们关心的 lag 值 show 出来然后通过代码处理一下报出来.例如: 我们可以起个远程的 cmd 脚本,定期去执行 kafka-consumer-groups.sh 工具然后通过 awk '{print $1,$2,$5}' 拿到对应的 consumer paritions 和 lag 值,然后使用脚本稍微处理一下该报警的报警,该忽略的忽略. 这个办法很 ok 但是有个不太好的地方是他

Kafka Consumer应用与高级应用

Kafka Consumer应用与高级应用 PS:本博客仅作学习.总结.交流使用,参考以下博客&资料 1.http://kafka.apache.org/intro.html 2.https://cwiki.apache.org/confluence/display/KAFKA/0.8.0+SimpleConsumer+Example 3.http://www.cnblogs.com/luotianshuai/p/5206662.html 4.http://www.cnblogs.com/fxj

Kafka设计解析(四)- Kafka Consumer设计解析

本文转发自Jason’s Blog,原文链接 http://www.jasongj.com/2015/08/09/KafkaColumn4 摘要 本文主要介绍了Kafka High Level Consumer,Consumer Group,Consumer Rebalance,Low Level Consumer实现的语义,以及适用场景.以及未来版本中对High Level Consumer的重新设计–使用Consumer Coordinator解决Split Brain和Herd等问题. H

[Big Data - Kafka] Kafka设计解析(四):Kafka Consumer解析

High Level Consumer 很多时候,客户程序只是希望从Kafka读取数据,不太关心消息offset的处理.同时也希望提供一些语义,例如同一条消息只被某一个Consumer消费(单播)或被所有Consumer消费(广播).因此,Kafka High Level Consumer提供了一个从Kafka消费数据的高层抽象,从而屏蔽掉其中的细节并提供丰富的语义. Consumer Group High Level Consumer将从某个Partition读取的最后一条消息的offset存

Kafka Consumer接口

对于kafka的consumer接口,提供两种版本,   high-level 一种high-level版本,比较简单不用关心offset, 会自动的读zookeeper中该Consumer group的last offset 参考,https://cwiki.apache.org/confluence/display/KAFKA/Consumer+Group+Example 不过要注意一些注意事项,对于多个partition和多个consumer 1. 如果consumer比partition

转:Kafka设计解析(四):Kafka Consumer解析

High Level Consumer 很多时候,客户程序只是希望从Kafka读取数据,不太关心消息offset的处理.同时也希望提供一些语义,例如同一条消息只被某一个 Consumer消费(单播)或被所有Consumer消费(广播).因此,Kafka High Level Consumer提供了一个从Kafka消费数据的高层抽象,从而屏蔽掉其中的细节并提供丰富的语义. Consumer Group High Level Consumer将从某个Partition读取的最后一条消息的offset

【原创】Kafka Consumer 多线程 实例

Kafka 0.9版本开始推出了Java版本的consumer,优化了coordinator的设计以及摆脱了对zookeeper的依赖.社区最近也在探讨正式用这套consumer API替换Scala版本的consumer的计划.鉴于目前这方面的资料并不是很多,本文将尝试给出一个利用KafkaConsumer编写的多线程消费者实例,希望对大家有所帮助. 这套API最重要的入口就是KafkaConsumer(o.a.k.clients.consumer.KafkaConsumer),普通的单线程使

Kafka详解五、Kafka Consumer的底层API- SimpleConsumer

Kafka提供了两套API给Consumer The high-level Consumer API The SimpleConsumer API 第一种高度抽象的Consumer API,它使用起来简单.方便,但是对于某些特殊的需求我们可能要用到第二种更底层的API,那么先介绍下第二种API能够帮助我们做哪些事情 一个消息读取多次 在一个处理过程中只消费Partition其中的一部分消息 添加事务管理机制以保证消息被处理且仅被处理一次 使用SimpleConsumer有哪些弊端呢? 必须在程序