luogu P3396 哈希冲突(分块?)

我们可以维护一个\(f[i][j]\)代表%\(i\)意义下得\(j\)的答案。然后维护就炸了。
先设\(x=\sqrt{n}\)然后我们发现,当\(i>x\)时我们直接暴力复杂度为\(O(x)\),然后我们对\(i\leq{x}\)的i维护\(f[i][j]\),这样询问复杂度\(O(1)\),维护复杂度\(O(x)\)。就可以通过此题了。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=200100;
int n,m,a[N],f[500][500],Block;
int read(){
    int sum=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
    return sum*f;
}
int main(){
    n=read(),m=read();
    Block=sqrt(n);
    for(int i=1;i<=n;i++){
        a[i]=read();
        for(int j=1;j<=Block;j++){
            f[j][i%j]+=a[i];
        }
    }
    char s[3];
    while(m--){
        scanf("%s",s);
        int x=read(),y=read();
        if(s[0]=='A'){
            if(x>Block){
                int tmp=0;
                for(int i=y;i<=n;i+=x)tmp+=a[i];
                printf("%d\n",tmp);
            }
            else printf("%d\n",f[x][y]);
        }
        else{
            for(int i=1;i<=Block;i++)
                f[i][x%i]-=a[x],f[i][x%i]+=y;
            a[x]=y;
        }
    }
    return 0;
}

原文地址:https://www.cnblogs.com/Xu-daxia/p/10124223.html

时间: 2024-10-09 11:35:48

luogu P3396 哈希冲突(分块?)的相关文章

P3396 哈希冲突 (根号算法)

题目链接:https://www.luogu.org/problemnew/show/P3396 题目描述 众所周知,模数的hash会产生冲突.例如,如果模的数p=7,那么4和11便冲突了. B君对hash冲突很感兴趣.他会给出一个正整数序列value[]. 自然,B君会把这些数据存进hash池.第value[k]会被存进(k%p)这个池.这样就能造成很多冲突. B君会给定许多个p和x,询问在模p时,x这个池内数的总和. 另外,B君会随时更改value[k].每次更改立即生效. 保证1<=p<

哈希冲突[分块(思想)]

题目背景 此题约为NOIP提高组Day2T2难度. 题目描述 众所周知,模数的hash会产生冲突.例如,如果模的数p=7,那么4和11便冲突了. B君对hash冲突很感兴趣.他会给出一个正整数序列value[]. 自然,B君会把这些数据存进hash池.第value[k]会被存进(k%p)这个池.这样就能造成很多冲突. B君会给定许多个p和x,询问在模p时,x这个池内数的总和. 另外,B君会随时更改value[k].每次更改立即生效. 保证1<=p<n1<=p<n1<=p<

P3396 哈希冲突

题目背景 此题约为NOIP提高组Day2T2难度. 题目描述 众所周知,模数的hash会产生冲突.例如,如果模的数p=7,那么4和11便冲突了. B君对hash冲突很感兴趣.他会给出一个正整数序列value[]. 自然,B君会把这些数据存进hash池.第value[k]会被存进(k%p)这个池.这样就能造成很多冲突. B君会给定许多个p和x,询问在模p时,x这个池内数的总和. 另外,B君会随时更改value[k].每次更改立即生效. 保证. 输入输出格式 输入格式: 第一行,两个正整数n,m,其

【数据结构】处理哈希冲突的开链法(哈希桶)算法实现

实现哈希表时,我们常见的方法是线性探测.二次探测,这两个算法也很简单.若有兴趣,可以查看我的博客.但是,这两个算法有一个共同点就是:空间利用率低.为什么这么说呢?线性探测.二次探测的高效性很大程度上要取决于它的载荷因子,载荷因子即:存放关键字个数/空间大小. 通过查阅资料,我发现,使用素数做除数可以减少哈希冲突(具体原因不详,大师专研的,发现很好用,就在这里分享给大家).见下: ----素数表 // 使用素数表对齐做哈希表的容量,降低哈希冲突 const int _PrimeSize = 28;

哈希冲突的处理【闭散列方法-线性探测和二次探测】

散列表(Hash table,也叫哈希表),是根据关键码值(Key value)而直接进行访问的数据结构.也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度.这个映射函数叫做散列函数,存放记录的数组叫做散列表. 给定表M,存在函数Hash(key),对任意给定的关键字值key,代入函数后若能得到包含该关键字的记录在表中的地址,则称表M为哈希(Hash)表,函数Hash(key)为哈希(Hash) 函数. 构造哈希表的两种方法 1.直接定址法--取关键字的某个线性函数为散列地

算法学习 - HashTable开放地址法解决哈希冲突

开放地址法解决哈希冲突 线性开放地址法 线性开放地址法就是在hash之后,当发现在位置上已经存在了一个变量之后,放到它下一个位置,假如下一个位置也冲突,则继续向下,依次类推,直到找到没有变量的位置,放进去. 平方开放地址法 平方地址法就是在hash之后,当正确位置上存在冲突,不放到挨着的下一个位置,而是放到第2^0位置,假如继续冲突放到2^1的位置,依次2^3... 直到遇到不冲突的位置放进去. 双散列开放地址法 双散列同上,不过不是放到2^的位置,而是放到key - hash(key, tab

算法学习 - Hash Table操作,分离链接法解决哈希冲突

分离链接法 hash table是映射机制的,最大的优点就是它的操作是O(1)级别的.但是会出现哈希冲突,这就需要几种办法来解决.这里先说一种:分离链接法. 就是当插入的位置已经存在一个值之后,那么在这个值之后插入,就可以了,也叫拉链法.(但是其实会降低查找速度,变成O(n)级别) 下面是代码: // // main.cpp // HashTable_SeparateChaining // // Created by Alps on 14-8-5. // Copyright (c) 2014年

【干货】C++哈希桶(开链法解决哈希冲突)类的实现

开链法(哈希桶)是解决哈希冲突的常用手法,结构如下: 数据结构的设计思路是这样的,定义一个K-V的链式节点(Node),以数组方式存储节点指针 实现代码如下: #include<vector> #include"HashTable.h" size_t GetSize() { static size_t index = 0; const int _PrimeSize = 28; static const unsigned long _PrimeList[_PrimeSize]

处理哈希冲突的线性探测法

哈希表,是根据关键字(Key value)而直接访问在内存存储位置的数据结构.也就是说,它通过计算一个关于键值的函数,将所需查询的数据映射到表中一个位置来访问记录,这加快了查找速度.这个映射函数称做散列函数,存放记录的数组称做散列表.(摘自维基百科) 对不同的关键字可能得到同一散列地址,即k1!=k2,而f(k1)=f(k2),这种现象称为碰撞(英语:Collision),也叫哈希冲突. 处理哈希冲突的方法有很多种: 闭散列法 开链法(哈希桶) 素数表 字符串哈希算法 在这里我们讨论最简单的闭散