数据结构开发(11):双向循环链表的实现

0.目录

1.双向循环链表的实现

2.小结

1.双向循环链表的实现

本节目标:

  • 使用 Linux 内核链表实现 StLib 中的双向循环链表
  • template <typename T> class DualCircleList;

StLib 中双向循环链表的设计思路:

  • 数据结点之间在逻辑上构成双向循环链表,头结点仅用于结点的定位。

实现思路:

  • 通过模板定义 DualCircleList 类,继承自 DualLinkList 类
  • 在 DualCircleList 内部使用Linux内核链表进行实现
  • 使用 struct list_head 定义 DualCircleList 的头结点
  • 特殊处理:循环遍历时忽略头结点

实现要点:

  • 通过 list_head 进行目标结点定位( position(i) )
  • 通过 list_entry 将 list_head 指针转换为目标结点指针
  • 通过 list_for_each 实现 int find(const T& e) 函数
  • 遍历函数中的 next() 和 pre() 需要考虑跳过头结点

双向循环链表的实现(DualLinkList.h):

使用到的LinuxList.h头文件放在文字尾部:LinuxList.h

DualLinkList.h

#ifndef DUALCIRCLELIST_H
#define DUALCIRCLELIST_H

#include "LinuxList.h"
#include "DualLinkList.h"

namespace StLib
{

template <typename T>
class DualCircleList : public DualLinkList<T>
{
protected:
    struct Node : public Object
    {
        list_head head;
        T value;
    };

    list_head m_header;
    list_head* m_current;

    list_head* position(int i) const
    {
        list_head* ret = const_cast<list_head*>(&m_header);

        for(int p=0; p<i; p++)
        {
            ret = ret->next;
        }

        return ret;
    }

    int mod(int i) const
    {
        return (this->m_length == 0) ? 0 : (i % this->m_length);
    }
public:
    DualCircleList()
    {
        this->m_length = 0;
        this->m_step = 1;

        m_current = NULL;

        INIT_LIST_HEAD(&m_header);
    }

    bool insert(const T& e)
    {
        return insert(this->m_length, e);
    }

    bool insert(int i, const T& e)
    {
        bool ret = true;
        Node* node = new Node();

        i = i % (this->m_length + 1);

        if( node != NULL )
        {
            node->value = e;

            list_add_tail(&node->head, position(i)->next);

            this->m_length++;
        }
        else
        {
            THROW_EXCEPTION(NoEnoughMemoryException, "No memory to insert new element ...");
        }

        return ret;
    }

    bool remove(int i)
    {
        bool ret = true;

        i = mod(i);

        ret = ((0 <= i) && (i < this->m_length));

        if( ret )
        {
            list_head* toDel = position(i)->next;

            if( m_current == toDel )
            {
                m_current = toDel->next;
            }

            list_del(toDel);

            this->m_length--;

            delete list_entry(toDel, Node, head);
        }

        return ret;
    }

    bool set(int i, const T& e)
    {
        bool ret = true;

        i = mod(i);

        ret = ((0 <= i) && (i < this->m_length));

        if( ret )
        {
            list_entry(position(i)->next, Node, head)->value = e;
        }

        return ret;
    }

    T get(int i) const
    {
        T ret;

        if( get(i, ret) )
        {
            return ret;
        }
        else
        {
            THROW_EXCEPTION(IndexOutOfBoundsException, "Invalid parameter i to get element ...");
        }

        return ret;
    }

    bool get(int i, T& e) const
    {
        bool ret = true;

        i = mod(i);

        ret = ((0 <= i) && (i < this->m_length));

        if( ret )
        {
            e = list_entry(position(i)->next, Node, head)->value;
        }

        return ret;
    }

    int find(const T& e) const
    {
        int ret = -1;
        int i = 0;
        list_head* slider = NULL;

        list_for_each(slider, &m_header)
        {
            if( list_entry(slider, Node, head)->value == e )
            {
                ret = i;
                break;
            }

            i++;
        }

        return ret;
    }

    int length() const
    {
        return this->m_length;
    }

    void clear()
    {
        while( this->m_length > 0 )
        {
            remove(0);
        }
    }

    bool move(int i, int step = 1)
    {
        bool ret = (step > 0);

        i = mod(i);

        ret = ret && ((0 <= i) && (i < this->m_length));

        if( ret )
        {
            m_current = position(i)->next;

            this->m_step = step;
        }

        return ret;
    }

    bool end()
    {
        return (m_current == NULL) || (this->m_length == 0);
    }

    virtual T current()
    {
        if( !end() )
        {
            return list_entry(m_current, Node, head)->value;
        }
        else
        {
            THROW_EXCEPTION(InvalidOperationException, "No value at current position ...");
        }
    }

    bool next()
    {
        int i = 0;

        while( (i < this->m_step) && !end() )
        {
            if( m_current != &m_header )
            {
                m_current = m_current->next;
                i++;
            }
            else
            {
                m_current = m_current->next;
            }
        }

        if( m_current == &m_header )
        {
            m_current = m_current->next;
        }

        return (i == this->m_step);
    }

    bool pre()
    {
        int i = 0;

        while( (i < this->m_step) && !end() )
        {
            if( m_current != &m_header )
            {
                m_current = m_current->prev;
                i++;
            }
            else
            {
                m_current = m_current->prev;
            }
        }

        if( m_current == &m_header )
        {
            m_current = m_current->prev;
        }

        return (i == this->m_step);
    }

    ~DualCircleList()
    {
        clear();
    }
};

}

#endif // DUALCIRCLELIST_H

main.cpp测试

#include <iostream>
#include "DualCircleList.h"

using namespace std;
using namespace StLib;

int main()
{
    DualCircleList<int> d1;

    for(int i=0; i<5; i++)
    {
        d1.insert(0, i);
        d1.insert(0, 5);
    }

    cout << "begin" << endl;

    d1.move(d1.length()-1);

    while( d1.find(5) != -1 )
    {
        if( d1.current() == 5 )
        {
            cout << d1.current() << endl;

            d1.remove(d1.find(d1.current()));
        }
        else
        {
            d1.pre();
        }
    }

    cout << "end" << endl;

//    for(int i=0; i<d1.length(); i++)
//    {
//        cout << d1.get(i) << endl;
//    }
    for(int i=0; i<10; i++)
    {
        cout << d1.get(i) << endl;
    }

    return 0;
}

运行结果为:

begin
5
5
5
5
5
end
4
3
2
1
0
4
3
2
1
0

思考题——下面代码中的 pn1 和 pn2 是否相等?为什么?

2.小结

  • Linux内核链表是带头结点的双向循环链表
  • DualCircleList 使用Linux内核链表进行内部实现
  • DualCircleList 在循环遍历时需要跳过头结点
  • 将 list_head 指针转换为目标结点指针时,使用 list_entry 宏

LinuxList.h:

需要将LinuxList.h中的new改成node。

#ifndef _LINUX_LIST_H
#define _LINUX_LIST_H

// #include <linux/types.h>
// #include <linux/stddef.h>
// #include <linux/poison.h>
// #include <linux/prefetch.h>

#ifndef offsetof
#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
#endif

#ifndef container_of
#define container_of(ptr, type, member) ((type *)((char *)ptr - offsetof(type,member)))
#endif

#define prefetch(x) ((void)x)

#define LIST_POISON1  (NULL)
#define LIST_POISON2  (NULL)

struct list_head {
    struct list_head *next, *prev;
};

struct hlist_head {
    struct hlist_node *first;
};

struct hlist_node {
    struct hlist_node *next, **pprev;
};

/*
 * Simple doubly linked list implementation.
 *
 * Some of the internal functions ("__xxx") are useful when
 * manipulating whole lists rather than single entries, as
 * sometimes we already know the next/prev entries and we can
 * generate better code by using them directly rather than
 * using the generic single-entry routines.
 */

#define LIST_HEAD_INIT(name) { &(name), &(name) }

#define LIST_HEAD(name)     struct list_head name = LIST_HEAD_INIT(name)

static void INIT_LIST_HEAD(struct list_head *list)
{
    list->next = list;
    list->prev = list;
}

/*
 * Insert a new entry between two known consecutive entries.
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
#ifndef CONFIG_DEBUG_LIST
static void __list_add(struct list_head *node,
                  struct list_head *prev,
                  struct list_head *next)
{
    next->prev = node;
    node->next = next;
    node->prev = prev;
    prev->next = node;
}
#else
extern void __list_add(struct list_head *node,
                  struct list_head *prev,
                  struct list_head *next);
#endif

/**
 * list_add - add a new entry
 * @new: new entry to be added
 * @head: list head to add it after
 *
 * Insert a new entry after the specified head.
 * This is good for implementing stacks.
 */
static void list_add(struct list_head *node, struct list_head *head)
{
    __list_add(node, head, head->next);
}

/**
 * list_add_tail - add a new entry
 * @new: new entry to be added
 * @head: list head to add it before
 *
 * Insert a new entry before the specified head.
 * This is useful for implementing queues.
 */
static void list_add_tail(struct list_head *node, struct list_head *head)
{
    __list_add(node, head->prev, head);
}

/*
 * Delete a list entry by making the prev/next entries
 * point to each other.
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
static void __list_del(struct list_head * prev, struct list_head * next)
{
    next->prev = prev;
    prev->next = next;
}

/**
 * list_del - deletes entry from list.
 * @entry: the element to delete from the list.
 * Note: list_empty() on entry does not return true after this, the entry is
 * in an undefined state.
 */
#ifndef CONFIG_DEBUG_LIST
static void __list_del_entry(struct list_head *entry)
{
    __list_del(entry->prev, entry->next);
}

static void list_del(struct list_head *entry)
{
    __list_del(entry->prev, entry->next);
    entry->next = LIST_POISON1;
    entry->prev = LIST_POISON2;
}
#else
extern void __list_del_entry(struct list_head *entry);
extern void list_del(struct list_head *entry);
#endif

/**
 * list_replace - replace old entry by new one
 * @old : the element to be replaced
 * @new : the new element to insert
 *
 * If @old was empty, it will be overwritten.
 */
static void list_replace(struct list_head *old,
                struct list_head *node)
{
    node->next = old->next;
    node->next->prev = node;
    node->prev = old->prev;
    node->prev->next = node;
}

static void list_replace_init(struct list_head *old,
                    struct list_head *node)
{
    list_replace(old, node);
    INIT_LIST_HEAD(old);
}

/**
 * list_del_init - deletes entry from list and reinitialize it.
 * @entry: the element to delete from the list.
 */
static void list_del_init(struct list_head *entry)
{
    __list_del_entry(entry);
    INIT_LIST_HEAD(entry);
}

/**
 * list_move - delete from one list and add as another‘s head
 * @list: the entry to move
 * @head: the head that will precede our entry
 */
static void list_move(struct list_head *list, struct list_head *head)
{
    __list_del_entry(list);
    list_add(list, head);
}

/**
 * list_move_tail - delete from one list and add as another‘s tail
 * @list: the entry to move
 * @head: the head that will follow our entry
 */
static void list_move_tail(struct list_head *list,
                  struct list_head *head)
{
    __list_del_entry(list);
    list_add_tail(list, head);
}

/**
 * list_is_last - tests whether @list is the last entry in list @head
 * @list: the entry to test
 * @head: the head of the list
 */
static int list_is_last(const struct list_head *list,
                const struct list_head *head)
{
    return list->next == head;
}

/**
 * list_empty - tests whether a list is empty
 * @head: the list to test.
 */
static int list_empty(const struct list_head *head)
{
    return head->next == head;
}

/**
 * list_empty_careful - tests whether a list is empty and not being modified
 * @head: the list to test
 *
 * Description:
 * tests whether a list is empty _and_ checks that no other CPU might be
 * in the process of modifying either member (next or prev)
 *
 * NOTE: using list_empty_careful() without synchronization
 * can only be safe if the only activity that can happen
 * to the list entry is list_del_init(). Eg. it cannot be used
 * if another CPU could re-list_add() it.
 */
static int list_empty_careful(const struct list_head *head)
{
    struct list_head *next = head->next;
    return (next == head) && (next == head->prev);
}

/**
 * list_rotate_left - rotate the list to the left
 * @head: the head of the list
 */
static void list_rotate_left(struct list_head *head)
{
    struct list_head *first;

    if (!list_empty(head)) {
        first = head->next;
        list_move_tail(first, head);
    }
}

/**
 * list_is_singular - tests whether a list has just one entry.
 * @head: the list to test.
 */
static int list_is_singular(const struct list_head *head)
{
    return !list_empty(head) && (head->next == head->prev);
}

static void __list_cut_position(struct list_head *list,
        struct list_head *head, struct list_head *entry)
{
    struct list_head *new_first = entry->next;
    list->next = head->next;
    list->next->prev = list;
    list->prev = entry;
    entry->next = list;
    head->next = new_first;
    new_first->prev = head;
}

/**
 * list_cut_position - cut a list into two
 * @list: a new list to add all removed entries
 * @head: a list with entries
 * @entry: an entry within head, could be the head itself
 *  and if so we won‘t cut the list
 *
 * This helper moves the initial part of @head, up to and
 * including @entry, from @head to @list. You should
 * pass on @entry an element you know is on @head. @list
 * should be an empty list or a list you do not care about
 * losing its data.
 *
 */
static void list_cut_position(struct list_head *list,
        struct list_head *head, struct list_head *entry)
{
    if (list_empty(head))
        return;
    if (list_is_singular(head) &&
        (head->next != entry && head != entry))
        return;
    if (entry == head)
        INIT_LIST_HEAD(list);
    else
        __list_cut_position(list, head, entry);
}

static void __list_splice(const struct list_head *list,
                 struct list_head *prev,
                 struct list_head *next)
{
    struct list_head *first = list->next;
    struct list_head *last = list->prev;

    first->prev = prev;
    prev->next = first;

    last->next = next;
    next->prev = last;
}

/**
 * list_splice - join two lists, this is designed for stacks
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 */
static void list_splice(const struct list_head *list,
                struct list_head *head)
{
    if (!list_empty(list))
        __list_splice(list, head, head->next);
}

/**
 * list_splice_tail - join two lists, each list being a queue
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 */
static void list_splice_tail(struct list_head *list,
                struct list_head *head)
{
    if (!list_empty(list))
        __list_splice(list, head->prev, head);
}

/**
 * list_splice_init - join two lists and reinitialise the emptied list.
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 *
 * The list at @list is reinitialised
 */
static void list_splice_init(struct list_head *list,
                    struct list_head *head)
{
    if (!list_empty(list)) {
        __list_splice(list, head, head->next);
        INIT_LIST_HEAD(list);
    }
}

/**
 * list_splice_tail_init - join two lists and reinitialise the emptied list
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 *
 * Each of the lists is a queue.
 * The list at @list is reinitialised
 */
static void list_splice_tail_init(struct list_head *list,
                     struct list_head *head)
{
    if (!list_empty(list)) {
        __list_splice(list, head->prev, head);
        INIT_LIST_HEAD(list);
    }
}

/**
 * list_entry - get the struct for this entry
 * @ptr:    the &struct list_head pointer.
 * @type:   the type of the struct this is embedded in.
 * @member: the name of the list_struct within the struct.
 */
#define list_entry(ptr, type, member)     container_of(ptr, type, member)

/**
 * list_first_entry - get the first element from a list
 * @ptr:    the list head to take the element from.
 * @type:   the type of the struct this is embedded in.
 * @member: the name of the list_struct within the struct.
 *
 * Note, that list is expected to be not empty.
 */
#define list_first_entry(ptr, type, member)     list_entry((ptr)->next, type, member)

/**
 * list_for_each    -   iterate over a list
 * @pos:    the &struct list_head to use as a loop cursor.
 * @head:   the head for your list.
 */
#define list_for_each(pos, head)     for (pos = (head)->next; prefetch(pos->next), pos != (head);             pos = pos->next)

/**
 * __list_for_each  -   iterate over a list
 * @pos:    the &struct list_head to use as a loop cursor.
 * @head:   the head for your list.
 *
 * This variant differs from list_for_each() in that it‘s the
 * simplest possible list iteration code, no prefetching is done.
 * Use this for code that knows the list to be very short (empty
 * or 1 entry) most of the time.
 */
#define __list_for_each(pos, head)     for (pos = (head)->next; pos != (head); pos = pos->next)

/**
 * list_for_each_prev   -   iterate over a list backwards
 * @pos:    the &struct list_head to use as a loop cursor.
 * @head:   the head for your list.
 */
#define list_for_each_prev(pos, head)     for (pos = (head)->prev; prefetch(pos->prev), pos != (head);             pos = pos->prev)

/**
 * list_for_each_safe - iterate over a list safe against removal of list entry
 * @pos:    the &struct list_head to use as a loop cursor.
 * @n:      another &struct list_head to use as temporary storage
 * @head:   the head for your list.
 */
#define list_for_each_safe(pos, n, head)     for (pos = (head)->next, n = pos->next; pos != (head);         pos = n, n = pos->next)

/**
 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
 * @pos:    the &struct list_head to use as a loop cursor.
 * @n:      another &struct list_head to use as temporary storage
 * @head:   the head for your list.
 */
#define list_for_each_prev_safe(pos, n, head)     for (pos = (head)->prev, n = pos->prev;          prefetch(pos->prev), pos != (head);          pos = n, n = pos->prev)

/**
 * list_for_each_entry  -   iterate over list of given type
 * @pos:    the type * to use as a loop cursor.
 * @head:   the head for your list.
 * @member: the name of the list_struct within the struct.
 */
#define list_for_each_entry(pos, head, member)                  for (pos = list_entry((head)->next, typeof(*pos), member);           prefetch(pos->member.next), &pos->member != (head);             pos = list_entry(pos->member.next, typeof(*pos), member))

/**
 * list_for_each_entry_reverse - iterate backwards over list of given type.
 * @pos:    the type * to use as a loop cursor.
 * @head:   the head for your list.
 * @member: the name of the list_struct within the struct.
 */
#define list_for_each_entry_reverse(pos, head, member)              for (pos = list_entry((head)->prev, typeof(*pos), member);           prefetch(pos->member.prev), &pos->member != (head);             pos = list_entry(pos->member.prev, typeof(*pos), member))

/**
 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
 * @pos:    the type * to use as a start point
 * @head:   the head of the list
 * @member: the name of the list_struct within the struct.
 *
 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
 */
#define list_prepare_entry(pos, head, member)     ((pos) ? : list_entry(head, typeof(*pos), member))

/**
 * list_for_each_entry_continue - continue iteration over list of given type
 * @pos:    the type * to use as a loop cursor.
 * @head:   the head for your list.
 * @member: the name of the list_struct within the struct.
 *
 * Continue to iterate over list of given type, continuing after
 * the current position.
 */
#define list_for_each_entry_continue(pos, head, member)             for (pos = list_entry(pos->member.next, typeof(*pos), member);           prefetch(pos->member.next), &pos->member != (head);             pos = list_entry(pos->member.next, typeof(*pos), member))

/**
 * list_for_each_entry_continue_reverse - iterate backwards from the given point
 * @pos:    the type * to use as a loop cursor.
 * @head:   the head for your list.
 * @member: the name of the list_struct within the struct.
 *
 * Start to iterate over list of given type backwards, continuing after
 * the current position.
 */
#define list_for_each_entry_continue_reverse(pos, head, member)         for (pos = list_entry(pos->member.prev, typeof(*pos), member);           prefetch(pos->member.prev), &pos->member != (head);             pos = list_entry(pos->member.prev, typeof(*pos), member))

/**
 * list_for_each_entry_from - iterate over list of given type from the current point
 * @pos:    the type * to use as a loop cursor.
 * @head:   the head for your list.
 * @member: the name of the list_struct within the struct.
 *
 * Iterate over list of given type, continuing from current position.
 */
#define list_for_each_entry_from(pos, head, member)                 for (; prefetch(pos->member.next), &pos->member != (head);           pos = list_entry(pos->member.next, typeof(*pos), member))

/**
 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
 * @pos:    the type * to use as a loop cursor.
 * @n:      another type * to use as temporary storage
 * @head:   the head for your list.
 * @member: the name of the list_struct within the struct.
 */
#define list_for_each_entry_safe(pos, n, head, member)              for (pos = list_entry((head)->next, typeof(*pos), member),          n = list_entry(pos->member.next, typeof(*pos), member);          &pos->member != (head);                             pos = n, n = list_entry(n->member.next, typeof(*n), member))

/**
 * list_for_each_entry_safe_continue - continue list iteration safe against removal
 * @pos:    the type * to use as a loop cursor.
 * @n:      another type * to use as temporary storage
 * @head:   the head for your list.
 * @member: the name of the list_struct within the struct.
 *
 * Iterate over list of given type, continuing after current point,
 * safe against removal of list entry.
 */
#define list_for_each_entry_safe_continue(pos, n, head, member)             for (pos = list_entry(pos->member.next, typeof(*pos), member),              n = list_entry(pos->member.next, typeof(*pos), member);              &pos->member != (head);                                 pos = n, n = list_entry(n->member.next, typeof(*n), member))

/**
 * list_for_each_entry_safe_from - iterate over list from current point safe against removal
 * @pos:    the type * to use as a loop cursor.
 * @n:      another type * to use as temporary storage
 * @head:   the head for your list.
 * @member: the name of the list_struct within the struct.
 *
 * Iterate over list of given type from current point, safe against
 * removal of list entry.
 */
#define list_for_each_entry_safe_from(pos, n, head, member)                 for (n = list_entry(pos->member.next, typeof(*pos), member);                 &pos->member != (head);                                 pos = n, n = list_entry(n->member.next, typeof(*n), member))

/**
 * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
 * @pos:    the type * to use as a loop cursor.
 * @n:      another type * to use as temporary storage
 * @head:   the head for your list.
 * @member: the name of the list_struct within the struct.
 *
 * Iterate backwards over list of given type, safe against removal
 * of list entry.
 */
#define list_for_each_entry_safe_reverse(pos, n, head, member)          for (pos = list_entry((head)->prev, typeof(*pos), member),          n = list_entry(pos->member.prev, typeof(*pos), member);          &pos->member != (head);                             pos = n, n = list_entry(n->member.prev, typeof(*n), member))

/**
 * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
 * @pos:    the loop cursor used in the list_for_each_entry_safe loop
 * @n:      temporary storage used in list_for_each_entry_safe
 * @member: the name of the list_struct within the struct.
 *
 * list_safe_reset_next is not safe to use in general if the list may be
 * modified concurrently (eg. the lock is dropped in the loop body). An
 * exception to this is if the cursor element (pos) is pinned in the list,
 * and list_safe_reset_next is called after re-taking the lock and before
 * completing the current iteration of the loop body.
 */
#define list_safe_reset_next(pos, n, member)                    n = list_entry(pos->member.next, typeof(*pos), member)

/*
 * Double linked lists with a single pointer list head.
 * Mostly useful for hash tables where the two pointer list head is
 * too wasteful.
 * You lose the ability to access the tail in O(1).
 */

#define HLIST_HEAD_INIT { .first = NULL }
#define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }
#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
static void INIT_HLIST_NODE(struct hlist_node *h)
{
    h->next = NULL;
    h->pprev = NULL;
}

static int hlist_unhashed(const struct hlist_node *h)
{
    return !h->pprev;
}

static int hlist_empty(const struct hlist_head *h)
{
    return !h->first;
}

static void __hlist_del(struct hlist_node *n)
{
    struct hlist_node *next = n->next;
    struct hlist_node **pprev = n->pprev;
    *pprev = next;
    if (next)
        next->pprev = pprev;
}

static void hlist_del(struct hlist_node *n)
{
    __hlist_del(n);
    n->next = LIST_POISON1;
    n->pprev = LIST_POISON2;
}

static void hlist_del_init(struct hlist_node *n)
{
    if (!hlist_unhashed(n)) {
        __hlist_del(n);
        INIT_HLIST_NODE(n);
    }
}

static void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
{
    struct hlist_node *first = h->first;
    n->next = first;
    if (first)
        first->pprev = &n->next;
    h->first = n;
    n->pprev = &h->first;
}

/* next must be != NULL */
static void hlist_add_before(struct hlist_node *n,
                    struct hlist_node *next)
{
    n->pprev = next->pprev;
    n->next = next;
    next->pprev = &n->next;
    *(n->pprev) = n;
}

static void hlist_add_after(struct hlist_node *n,
                    struct hlist_node *next)
{
    next->next = n->next;
    n->next = next;
    next->pprev = &n->next;

    if(next->next)
        next->next->pprev  = &next->next;
}

/* after that we‘ll appear to be on some hlist and hlist_del will work */
static void hlist_add_fake(struct hlist_node *n)
{
    n->pprev = &n->next;
}

/*
 * Move a list from one list head to another. Fixup the pprev
 * reference of the first entry if it exists.
 */
static void hlist_move_list(struct hlist_head *old,
                   struct hlist_head *node)
{
    node->first = old->first;
    if (node->first)
        node->first->pprev = &node->first;
    old->first = NULL;
}

#define hlist_entry(ptr, type, member) container_of(ptr,type,member)

#define hlist_for_each(pos, head)     for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; });          pos = pos->next)

#define hlist_for_each_safe(pos, n, head)     for (pos = (head)->first; pos && ({ n = pos->next; 1; });          pos = n)

/**
 * hlist_for_each_entry - iterate over list of given type
 * @tpos:   the type * to use as a loop cursor.
 * @pos:    the &struct hlist_node to use as a loop cursor.
 * @head:   the head for your list.
 * @member: the name of the hlist_node within the struct.
 */
#define hlist_for_each_entry(tpos, pos, head, member)                for (pos = (head)->first;                             pos && ({ prefetch(pos->next); 1;}) &&                  ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;});          pos = pos->next)

/**
 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
 * @tpos:   the type * to use as a loop cursor.
 * @pos:    the &struct hlist_node to use as a loop cursor.
 * @member: the name of the hlist_node within the struct.
 */
#define hlist_for_each_entry_continue(tpos, pos, member)             for (pos = (pos)->next;                               pos && ({ prefetch(pos->next); 1;}) &&                  ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;});          pos = pos->next)

/**
 * hlist_for_each_entry_from - iterate over a hlist continuing from current point
 * @tpos:   the type * to use as a loop cursor.
 * @pos:    the &struct hlist_node to use as a loop cursor.
 * @member: the name of the hlist_node within the struct.
 */
#define hlist_for_each_entry_from(tpos, pos, member)                 for (; pos && ({ prefetch(pos->next); 1;}) &&                    ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;});          pos = pos->next)

/**
 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
 * @tpos:   the type * to use as a loop cursor.
 * @pos:    the &struct hlist_node to use as a loop cursor.
 * @n:      another &struct hlist_node to use as temporary storage
 * @head:   the head for your list.
 * @member: the name of the hlist_node within the struct.
 */
#define hlist_for_each_entry_safe(tpos, pos, n, head, member)            for (pos = (head)->first;                             pos && ({ n = pos->next; 1; }) &&                       ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;});          pos = n)

#endif

原文地址:https://www.cnblogs.com/PyLearn/p/10138644.html

时间: 2024-10-27 13:37:19

数据结构开发(11):双向循环链表的实现的相关文章

数据结构8: 双向链表(双向循环链表)的建立及C语言实现

之前接触到的链表都只有一个指针,指向直接后继,整个链表只能单方向从表头访问到表尾,这种结构的链表统称为 “单向链表”或“单链表”. 如果算法中需要频繁地找某结点的前趋结点,单链表的解决方式是遍历整个链表,增加算法的时间复杂度,影响整体效率.为了快速便捷地解决这类问题,在单向链表的基础上,给各个结点额外配备一个指针变量,用于指向每个结点的直接前趋元素.这样的链表被称为“双向链表”或者“双链表”. 双链表中的结点 双向链表中的结点有两个指针域,一个指向直接前趋,一个指向直接后继.(链表中第一个结点的

数据结构基础(12) --双向循环链表的设计与实现

双向链表的操作特点: (1) "查询" 和单链表相同; (2)"插入" 和"删除"时需要同时修改两个方向上的指针. 但是对于双向循环链表则在表尾插入非常的迅速, 只需O(1)的时间,因为有指向前面的指针, 因此双向循环链表会很容易的找到位于表尾的元素,因此双向循环链表比较适用于频繁在表尾插入的情况. 空链表: 双向循环链表节点构造: class DoubleListNode { private: Type data; DoubleListNode

数据结构-内核的双向循环链表-简单实现

list.h #ifndef LIST_H__ #define LIST_H__ struct list_head { struct list_head *prev ; struct list_head *next ; }; #define LIST_HEAD_INIT(name) { &(name), &(name) } #define LIST_HEAD(name) struct list_head name = LIST_HEAD_INIT(name) #define __list_

数据结构开发(9):循环链表与双向链表

0.目录 1.循环链表的实现 2.双向链表的实现 3.小结 1.循环链表的实现 什么是循环链表? 概念上 任意数据元素都有一个前驱和一个后继 所有的数据元素的关系构成一个逻辑上的环 实现上 循环链表是一种特殊的单链表 尾结点的指针域保存了首结点的地址 循环链表的逻辑构成: 循环链表的继承层次结构: 循环链表的实现思路: 通过模板定义CircleList类,继承自LinkList类 定义内部函数 last_to_first(),用于将单链表首尾相连 特殊处理:首元素的插入操作和删除操作 重新实现:

小猪的数据结构辅助教程——2.7 线性表中的双向循环链表

小猪的数据结构辅助教程--2.7 线性表中的双向循环链表 标签(空格分隔): 数据结构 本节学习路线图与学习要点 学习要点: 1.了解引入双向循环链表的原因 2.熟悉双向循环链表的特点以及存储结构 3.掌握双向循环链表的一些基本操作的实现逻辑 4.掌握逆序输出双向循环链表元素逻辑 1.双向循环链表的引入 2.双向循环链表的存储结构 双向循环链表的特点: 上面也说了,空间换时间,比起循环链表只是多了一个指向前驱的指针 特点的话: 判断空表:L ->next = L -> prior = L; 存

数据结构之双向链表(包含双向循环链表)

双向(循环)链表是线性表的链式存储结构的又一种形式. 在之前已经讲述了单向链表和循环链表.相比于单向链表只能从头结点出发遍历整个链表的局限性,循环链表使得可以从任意一个结点遍历整个链表. 但是,不管单向链表也好,循环链表也罢,都只能从一个方向遍历链表,即只能查找结点的下一个结点(后继结点),而不能查找结点的上一个结点(前驱结点).鉴于上述问题,引入了双向链表.由于双向循环链表包含双向链表的所有功能操作.因此,我们只讲述双向循环链表. 与单向链表不同,双向链表的结点构造如下图所示.即一个结点由三个

数据结构-双向循环链表(无头结点)相关算法

#include <stdio.h>#include <stdlib.h>#define OVERFLOW -2#define OK 1#define ERROR 0 //此双向循环链表无头结点typedef int ElemType;typedef struct DulNode {    ElemType data;    struct DulNode *prior;    struct DulNode *next;}DulNode,*DulLinkList; DulLinkLi

数据结构与算法——线性表链式存储(双向循环链表)

今天总结线性表中的双向循环链表. 什么是双向循环链表? 看名字估计也就知道了,首相他是一个循环链表,也就是最后一个结点的指针域不为空,而是指向头结点,其次与单向循环链表相比,它是双向的.所谓双向,就是给每个结点再增加一个指针域,这个指针域指向前一个结点. 即是下面这样(来自百度图片): 为什么要用双向循环链表? 无论单链表还是单向循环链表,都只有一个指针域,它们都是直接指向后继结点的,如果要查找当前结点的后继结点,会很方便.但是如果给定一个结点,要得到它的前继结点,就会很麻烦,必须从第一个元素开

数据结构_线性表_链式存储_双向循环链表的基本操作

//双向链表,将头结点和尾结点链接起来,就构成了双向循环链表 //双向循环链表是将头结点的前驱指针指向了尾结点,同时将尾结点的后劲指针指向了头结点. //空表,头结点的前驱和后继指针均指向了自己,这也是判断双向循环链表是否为空的条件, //双向循环链表具有对称性 //缺点,是要付出空间代价的 双向链表也叫双链表,是链表的一种,它的每个数据结点中都有两个指针,分别指向直接后继和直接前驱.所以,从双向链表中的任意一个结点开始,都可以很方便地访问它的前驱结点和后继结点.一般我们都构造双向循环链表. 代